Willful Ignorance and Reference Dependence of Self-Image Concerns

Vasilisa Petrishcheva†

November 8, 2021

Abstract

This paper studies how individuals update beliefs about their self-image in the case of positive and negative shocks to their self-image, and how these updated beliefs translate into willingness to acquire self-image-relevant information. I conduct a laboratory experiment in which subjects work on a self-image-relevant task, an IQ test, and experience a gain or loss in self-image induced by exogenously varying the task complexity. I find evidence for overly optimistic belief updating for subjects who experience a loss in self-image and overly pessimistic belief updating for those who experience a gain in self-image. Moreover, subjects who experience a loss in self-image update their beliefs stronger than those who experience a gain in self-image. All subjects are, on average, willing to pay to avoid information. Larger changes in beliefs lead to an increase in the willingness to pay for self-image-relevant feedback. I find no evidence supporting loss aversion in self-image concerns: subjects with marginal positive and negative belief differences do not have significantly different willingness to acquire information. I propose a simple stylized theoretical framework that offers a possible explanation for the patterns in belief updating and information avoidance in the experimental data.

JEL Codes: C91, D91

Keywords: Willful ignorance; Information avoidance; Self-image concerns; Ego utility; Motivated beliefs; Laboratory experiment

*I am grateful to Paul Heidhues, Mats Köster, Jens Prüfer, Gerhard Riener, Hannah Schildberg-Hörisch, Christopher Snyder, Joël van der Weele, Tobias Werner and the participants of the Economic Science Association Global Meeting 2021 and the DICE Brown Bag Seminar for helpful comments and suggestions. I also thank Marlene Merker for excellent research assistance. Financial support from DFG through the grant for GRK 1974 Competition Economics is gratefully acknowledged.

†University of Düsseldorf, Düsseldorf Institute for Competition Economics (DICE), Universitätsstr. 1, 40225 Düsseldorf, Germany; E-mail: vasilisa.petrishcheva@hhu.de.
1 Introduction

Information is a key element in most economic decisions. Individuals tend to seek certainty and avoid ambiguity. Yet, in many situations, people prefer to deliberately avoid information and remain willfully ignorant.\(^1\) Examples of information avoidance range from everyday interactions to high-stake decisions with long-term effects. For instance, individuals may not want to learn that the holiday season made them put on some weight or that there is a better deal for a recent purchase (Sweeny et al., 2010). In a health context, people tend to avoid learning about their genetic risks for cancer or the Huntington’s disease (Oster et al., 2013; Ropka et al., 2006) and their HIV status even when offered monetary incentives to do so (Thornton, 2008). In a finance context, investors tend to monitor their portfolios and balances closely on “good days”, e.g., on paycheck days or when the market goes up, and avoid logging into their accounts on “bad days” (Karlsson et al., 2009; Olafsson et al., 2018). In a workplace, managers often forego helpful feedback to avoid learning that their earlier decisions were incorrect because they want to maintain their professional self-image (Deshpande and Kohli, 1989; Schulz-Hardt et al., 2000; Zaltman, 1983). In the case of prosocial behavior, individuals often prefer to remain uninformed about the actual effectiveness of their altruistic actions or charitable donations and carry on a feeling of warm glow due to the fact of their deed but not to the impact on its recipient (Niehaus, 2014). Similarly, people tend to avoid learning about the potential harm their actions may yield for others (Dana et al., 2007; Grossman and Van Der Weele, 2017; Serra-Garcia and Szech, 2019).

This paper studies implications of changes in self-image for the demand for feedback as well as the evolution of the self-image itself. I conduct a laboratory experiment to analyze individuals’ willingness to avoid self-image-relevant feedback after having them work on more difficult or easier tasks in the first part of the experiment. The key novelty of the paper is two-fold. First, varying the complexity of the tasks allows inducing exogenous shock to subjects’ performance measurable on an individual level. Second, by complementing this approach with multiple elicitations of individuals’ beliefs about their performance, I observe the impact of exogenous positive and negative shocks to self-image on an individual level as well. I investigate whether subjects who expect positive feedback are more likely to acquire information than those who expect negative feedback. I also test for reference-dependence of self-image concerns as well as for loss aversion in the self-image domain.

The experimental data provide strong evidence of information avoidance independently of whether the expected feedback is positive or negative. Individuals tend to have a stronger willingness to avoid feedback if they expect it to be negative. In line with expectations, subjects update beliefs about their performance upwards if they work on easier tasks in the first part of the experiment, which translates into an improvement in their self-image. Subjects who work on harder tasks first update beliefs downwards, indicating the deterioration of

\(^1\)For a comprehensive multidisciplinary literature overview of information avoidance, see Golman et al., 2017.
their self-image. Moreover, subjects update beliefs about their self-image only slightly after the easier task, while subjects who have done the harder task first update much stronger. At the end of the experiment, after individuals worked on both hard and easy tasks, their beliefs about their performance in the intelligence test go back to the pre-experiment levels. This result indicates that subjects did not find the overall complexity of the IQ test surprising.

I propose a stylized theoretical framework that offers a simple explanation to the experimental findings, in particular, the surprising patterns in belief updating. The framework captures the idea of disappointment aversion (Gul, 1991). It follows closely the setup of Gollier and Muermann, 2010 and models the trade-off between the ex-ante feelings and the risk of ex-post disappointment. In this framework, agents, who derive utility from self-image, first manage expectations and choose an optimal degree of optimism. Then, they decide whether they want to acquire self-image-relevant information. In the context of my experiment, subjects may choose to be optimistic about their performance and derive utility ex-ante at the cost of a possible disappointment at the end of the experiment. Alternatively, participants may stay pessimistic in their beliefs throughout the experiment and likely be positively surprised at the end.

My experimental setup uses intelligence as a self-image relevant domain and lets subjects work on an IQ test (2). To induce exogenous gains and losses in their self-image, I randomize whether subjects first complete a more difficult or easier part of a standard IQ test. This design feature allows to induce a sharp symmetric heterogeneous shock in subjects’ performance in the first part that I observe on an individual level. After working on the easier part, subjects on average perceive their performance positively, and thus expect the good feedback. On the contrary, when initially working on the harder part perceived performance is on average worse, as is the feedback they expect. I employ a continuous willingness-to-pay (WTP) measure to elicit subjects’ exact willingness to acquire feedback.

In order to be able to study perceived gains and losses in self-image, I elicit subjects’ beliefs about their performance at three points over the course of the experiment. Prior belief elicitation takes place before subjects work on the IQ test. After inducing a gain or a loss in self-image by letting them work on easier or harder tasks, respectively, I elicit their beliefs again. The second belief elicitation allows to observe whether they update their beliefs, and whether they do so differently when they expect more positive and negative feedback. Furthermore, after the whole IQ test is complete and all subjects worked on the exactly same tasks, I elicit beliefs to analyze whether they recovered from the exogenous shock in self-image.

Multiple belief elicitations are an important feature of my design. While in standard economic theory the ultimate purpose of beliefs is to assist in the decision making processes, many recent studies have shown, both theoretically and experimentally, that individuals

2Intelligence, or IQ, is a commonly used self-image relevant domain. See, e.g., Fein and Spencer, 1997; Santos-Pinto and Sobel, 2005 and Castagnetti and Schmacker, 2020.
tend to hold motivated beliefs and argued that beliefs can be a choice variable (Bénabou and Tirole, 2002; Kőszegi, 2006). Experimental evidence shows that people dislike updating their beliefs negatively and react to noisy negative signals much weaker than to the positive ones (Coutts, 2019; Eil and Rao, 2011; Golman et al., 2017; Zimmermann, 2020). In other words, a gain in self-image might be internalized stronger than a loss of the same magnitude. In contrast, individuals react stronger to losses than to gains in monetary and material domains (Kahneman, Knetsch, et al., 1990; Kahneman and Tversky, 1979) as well as with respect to health outcomes (Bleichrodt et al., 2001) and social image (Petrischeva et al., 2020). It is important to observe not only actual differences in one’s performance but also perceived ones. This paper focuses on disentangling these effects by looking at the willingness to acquire feedback of individuals who experience measurable perceived gains and losses in self-image. When analyzing subjects’ willingness to acquire feedback, I take into consideration how they updated their beliefs.

This paper is organized as follows. Section 2 discusses the experimental design, implementation and technical details. In Section 3, I formulate the hypothesis. I present the results in Section 4. I discuss my results and propose a stylized theoretical framework in Section 5. Section 6 concludes.

2 Experimental design

My experimental setup includes three stages as shown in Figure 1. In Stage 1, I elicit subjects’ prior beliefs about their performance in the upcoming IQ test. I treat prior beliefs as a within-subject reference point in intelligence, a self-image-relevant domain. In Stage 2, I induce an exogenous shift in self-image. By introducing treatments Loss and Gain, I put subjects’ self-image at either loss or gain by varying the task complexity. I then ask subjects whether they are willing to acquire feedback about their performance and elicit their willingness-to-pay to do so and their beliefs about their performance. The second belief elicitation is necessary to see whether the treatment variation worked, i.e., whether subjects indeed expect losses and gains when I assume they do. In Stage 3, I let subjects work on the remaining tasks of the IQ test and elicit their performance beliefs upon completion.

First, I analyze belief updating for those with gains and losses in self-image. I focus on the two main aspects: Is subjects’ belief updating (a) going in the direction suggested by the treatment and (b) symmetric for gains and losses of self-image?

Additionally, this design allows to analyze subjects’ willingness to pay to acquire self-image-relevant feedback both unconditionally and conditionally on belief updating. Varying task complexity allows to induce an objective performance shift. Since subjects do not receive any signals about their performance except their subjective perception of it before they report the willingness to pay to acquire feedback, it is crucial to control for their beliefs.

3See, e.g., Fein and Spencer, 1997; Santos-Pinto and Sobel, 2005 and Castagnetti and Schmacker, 2020.
when analyzing their WTP for feedback. I test whether subjects who care about their self-image avoid ego-relevant feedback. Then, I analyze whether those who experience a loss in self-image are more willing to acquire feedback than those who experience gain. I also test whether subjects with marginal self-image losses have a disproportionately higher willingness to acquire feedback than those with marginal gains in self-image.

IQ test In this experiment, subjects work on Raven’s Progressive Matrices (RPMs; Raven, 1983), which are designed to measure fluid intelligence and often used in economic experiments to induce image concerns (e.g., Zimmermann, 2020 and Ewers and Zimmermann, 2015). In Figure 2 there are two examples of RPMs. They are picture puzzles with a missing piece. Among the available answers, subjects should choose the best logical fit to fill in the blank space. RPM tests commonly consist of five sets of matrices (A to E), with 12 matrices in each set. These sets progress in difficulty. Set A includes the easiest matrices; Set B is slightly harder, and so on. Set E contains the 12 hardest matrices. In Figure 2 the left matrix is one of the easier matrices from the set B (B3), and the right one is among the most complicated tasks from the set E (E10). Based on the reference data I expect student subjects to solve all the matrices in set A correctly. Hence, I do not use the 12 easiest matrices in this experiment but the 48 matrices from sets B to E.

I split 48 matrices into two parts: Easy and Hard. Matrices from sets B and C belong to the Easy part. Matrices from sets D and E form the Hard part. Both parts are progressive, i.e., they start with easy tasks and get more complicated over time. Matrices in parts Easy and Hard do not repeat or overlap. Subjects get one point if they solve a matrix correctly and get zero points otherwise. Subjects have a time limit of 30 seconds per matrix, which ensures that their performance is comparable within the experiment and to the reference sample, where the same time limit was imposed.

Stage 1 After reading general instructions and answering control questions subjects proceed to the first belief elicitation. I elicit their prior beliefs about their overall performance,
Belief elicitation procedure In the belief elicitation screen, subjects get the following information:

- A summary about the performance of the reference sample. I tell subjects that in 2014, 413 individuals worked on the same picture puzzles in the DICE Lab. Additionally, I give them a short description of the data, namely: (a) no previous participant solved all 48 matrices, (b) the average participant solved 39 matrices, and (c) all previous participants solved at least 20 matrices or more.

- A figure with the performance of the reference sample. I show a histogram with scores displayed on the horizontal axis and the frequency (i.e., percent of the participants) on the vertical axis.

- A disclaimer saying “Carefully and honestly answering the question is in your best interest”. Following Danz et al. (2020), I do not explain the exact monetary incentive structure in advance to reduce errors in belief elicitation. Instead, I tell them that the precise payment rule details are available by request at the end of the experiment.

- A slider with values between 0 and 48 and no default value where subjects should indicate how many matrices they think they will solve correctly.

- A phrase “I think I will solve X out of 48 picture puzzles correctly. It means that I think I will perform better than Y% of previous participants”, which completes automatically when they choose or adjust the slider.

See a complete belief elicitation screen in Appendix C.
I incentivize the decision using the binarized scoring rule (Danz et al., 2020; Hossain and Okui, 2013). According to the binarized scoring rule, an individual may earn a fixed payment. The probability of receiving it increases the closer is her guess to the true outcome. In the context of my experimental design, participants can earn one euro in each belief elicitation task. Throughout the experiment, I used experimental currency units (ECU). The exchange rate was 1 euro = 20 ECU. If their belief is correct, i.e., their perceived number of correctly solved matrices corresponds to their actual number of correctly solved matrices, they get a bonus of 20 ECU with a probability of one. Importantly, with the binarized scoring rule, subjects still have a small probability to get paid for the belief elicitation task, even if their guess and their actual performance differ a lot. Hence, their payoffs are not (directly) indicative of their performance.

Subjects’ prior beliefs about their performance in the IQ test serve as a within-subject reference point in intelligence. The procedure of belief elicitations is always the same. I always ask subjects about their beliefs about their overall performance. Payoffs of multiple belief elicitations are independent.

Stage 2 Subjects work on Part 1 of the test. In treatment Gain, Part 1 is Easy, such that subjects, on average, solve more matrices than they expected and hence can expect positive feedback about their performance. In treatment Loss, on the contrary, subjects work on Hard tasks, so they, on average, perform worse than expected. After participants completed 24 tasks in Part 1, I elicit their beliefs following the same procedure as described above.

After the second belief elicitation, I ask subjects about their willingness-to-pay to get feedback using the Becker-DeGroot-Marschak mechanism (Becker et al., 1964 BDM; see the screen in Appendix C). On a scale from -100 to 100 ECU (-5 to 5 euro), they report how much they would like to pay for feedback. Subjects are aware that WTP of -100 ECU guarantees that they will not receive information about their performance. WTP of 100 ECU means that they will certainly get feedback, and WTP of zero yields a 50% chance of receiving feedback about the number of matrices they solved correctly. I draw a random price for feedback from a uniform distribution with a support on the interval \([-100; 100]\). If the random price for feedback is smaller than or equal to the participants’ WTP, they pay the price and receive feedback. If the random price for feedback is higher than their WTP, they do not pay the price and do not receive the feedback.

Stage 3 Subjects work on the remaining 24 RPM tasks. It means that subjects from treatment Gain work now on the Hard part, while those from treatment Loss work on the Easy part. After Stage 3, all subjects have worked on the same 48 picture puzzles described above. Once subjects complete the task, I elicit beliefs about their performance again before they receive (or not) their feedback. I display their feedback in the same format as belief

\footnote{In the instructions, I refer to ECU as thalers (Taler) which is a commonly used ECU in the DICE Lab.}
elicitation, i.e., it says “You solved X out of 48 picture puzzles correctly. This means that you performed better than Y% of previous participants”.

Questionnaire After the main experiment is complete, subjects fill out a questionnaire. It contains the main sociodemographic characteristics such as age, gender, the field of study, occupation, current GPA (or last degree GPA), high school GPA as well as average monthly budget and spending. Additionally, I ask them about their experience in the lab, and collect independent measures of loss aversion in the monetary domain (Fehr and Goette, 2007; Gächter et al., 2007), risk aversion, and time preferences (Falk et al., 2016). Furthermore, subjects report the intensity of their social image concerns by answering the question "How important is the opinion that others hold about you to you?" following Ewers and Zimmermann (2015). I measure their overconfidence by letting them work on real-effort slider tasks and eliciting their beliefs about their performance (similar to S. Chen and Schildberg-Hörisch, 2019). Additionally, I elicit the intensity of self-image concerns following the approach of Aquino and Reed II (2002) and Grossman and Van Der Weele (2017). Subjects get a list of six statements about the importance of being kind, generous, and fair to their sense of self. They can choose whether they agree or disagree with those statements on a six-point Likert scale (from 0 indicating "strongly disagree" to 5 indicating "strongly agree"). Following Grossman and Van Der Weele (2017), I sum the points from evaluating all six statements to generate a measure of self-image concerns. The exact wording of each question is in Appendices C.7 and C.8. The independent measure of loss aversion in monetary domains is a set of incentivized lotteries. There are six lotteries and subjects can decide whether they accept or reject participation in each of them. One of the lotteries is paid out randomly at the end of the experiment. Each lottery yields a 50% chance of winning 12 ECU and a 50% chance of losing 4, 6, 8, 10, 12, or 14 ECU. Subjects do not earn any additional money if they rejected a lottery.

The independent measure of overconfidence is incentivized as well. There are 11 slider tasks, and subjects should position each slider in the middle (between 49 and 51 on a 0-100 scale). For each correctly solved slider task, subjects received 2 ECU. Furthermore, subjects could receive additional 10 ECU if their guess about how many sliders they solved correctly was sufficiently accurate according to the binarized scoring rule (Hossain and Okui, 2013).

Payment structure Total earnings are only paid out upon completion of the experiment to prevent subjects from potentially dropping out. Subjects received a show-up fee of 3.70 euro as well as a 5 euro endowment at the beginning of the experiment, which might be used to pay for the feedback about their performance. The 5 euro endowment assures that, to ensure (not) getting feedback, the stakes are relatively high. However, subjects cannot make an absolute loss after their decision is realized. Additionally, subjects face three rounds of belief elicitation (before the experiment, after Part 1, and after Part 2) which pay 1 euro
each with a probability that depends on the correctness of their belief. On top of that, loss aversion and overconfidence measures were monetarily incentivized.

Technical details and procedure This experiment was conducted online with subjects from the DICE Lab, University of Düsseldorf, in June 2021. For each session, all subjects took part in a web-conference call where they could ask clarifying questions or receive technical support if needed. The experiment is preregistered on AEA RCT Registry and was programmed using oTree (D. L. Chen et al., 2016). Subjects were recruited via Orsee (Greiner, 2015). Original instructions (in German) and the translated version of the instructions (in English) are in Appendix C. Subjects earned 13.3 euro on average for the experiment, which lasted approximately 45 minutes. No subjects dropped out of the experiment. During the experiment, participants could not communicate with or see each other.

I conducted six online sessions with 20-24 participants each. In total, 132 subjects participated in the experiment: 67 of them were assigned to treatment Gain and the remaining 65 to treatment Loss. As reported in Table A1, the sample is well-balanced with respect to individual characteristics between treatments, such that no exclusion criteria apply.

3 Hypotheses

In this section, I formulate four pre-registered hypotheses regarding belief updating and information avoidance in my experiment. First, I hypothesize that the share of subjects with negative willingness-to-pay to acquire feedback relevant to their self-image in the IQ domain will be non-negligible.

Hypothesis 1. (Willful ignorance)

Individuals who care about their self-image may avoid feedback relevant for their self-image.

This experimental design induces changes in subjects’ performance in an IQ test, a self-image-relevant domain. Acquiring or avoiding feedback may influence subjects’ utility derived from their self-image. Hence, following the literature on information avoidance and willful ignorance (e.g., Golman et al., 2017; Kőszegi, 2006), I expect subjects may avoid information relevant for their self-image. Next, I formulate a hypothesis about how subjects update beliefs about their performance in the IQ test when I introduce positive and negative shocks to their performance.

8Li et al. (2020) find that using web-conference calls in online experiments leads to outcomes comparable to those the laboratory experiments for various economic games.

10IRB Approval No. 49nWIXIa

11Subjects earned at least 9.7 and at most 17.7 euro in this experiment. In addition to a show-up fee of 3.7 euro and an endowment of 5 euro, subjects’ earnings depended on numerous decisions, namely, belief elicitation, willingness-to-pay for feedback, loss aversion lotteries, and performance in the overconfidence tasks. Subjects were not able to make an absolute loss in this experiment.
Hypothesis 2. (Asymmetric belief updating)

Individuals who care about their self-image may update their beliefs stronger if they experience a gain in a self-image-relevant domain compared to a loss in a self-image-relevant domain of the same size.

In line with motivated beliefs literature (Coutts, 2019; Eil and Rao, 2011; Golman et al., 2017; Zimmermann, 2020), I hypothesize that the absolute difference between prior beliefs and the first posterior beliefs will be larger for subjects in Gain than in Loss. It implies that subjects who on average experience gains in their self-image update their beliefs stronger than those who experience losses of the same size in their self-image. In presence of a rather strong but very noisy signal about their performance (their own perception of their performance), I expect subjects who observe a negative signal to be more hesitant to update their beliefs about their IQ compared to those who observed a positive signal.

Next, I formulate the following hypothesis for perceived gains and losses of the same size:

Hypothesis 3. (Reference-dependence)

On average, individuals who care about their self-image and expect a loss in their self-image are more willing to acquire self-image-relevant information than those who expect a gain in their self-image of the same size.

I expect that individuals with a perceived loss will be more willing to acquire feedback about their performance than those with a perceived gain in self-image. The key novelty of this paper is analyzing the reference dependence of self-image concerns. More specifically, I test whether subjects who expect a loss in self-image have a higher willingness to pay to acquire feedback than those who expect a gain in self-image. If an individual expects a loss in self-image, positive feedback may serve as a tool to avoid this loss. Moreover, this paper focuses on individuals who experience marginal gains and losses. According to prospect theory (Kahneman and Tversky, 1979), there is a kink in the value function for changes in self-image which results in a kink in incentives to acquire self-image-relevant feedback. I hence formulate Hypothesis 4:

Hypothesis 4. (Loss aversion)

Individuals who care about their self-image and expect a marginal loss in their self-image are more willing to acquire information than those who expect a marginal gain in their self-image.

4 Results

This section is organized as follows. First, I discuss results related to subjects’ performance in the IQ test in Parts 1 and 2 in Section 4.1. Next, I analyze subjects’ beliefs about their intelligence in Section 4.2. In Section 4.3 I discuss their willingness-to-pay to receive self-image-relevant feedback.
Despite not being monetarily incentivized, subjects exerted substantial effort on solving the Raven’s Progressive Matrices. On average, they solved 36.4 matrices correctly. Out of 48 matrices that subjects have worked on, they gave at least 24 and at most 44 correct answers.\footnote{Only one participant did not solve any matrices correctly by letting the 30-second timers run out. I exclude this subject from further analysis.}

As intended by the experimental design, there are no significant differences in the distributions of the overall performance of subjects in treatments \textit{Gain} and \textit{Loss} ($p=0.937$).\footnote{In my analyses, I report two-sided Mann-Whitney U test results unless specified otherwise. I refer to results as (highly/weakly) statistically significant if the respective p-values are below 0.05 (0.01/0.1).} I display the distributions of the score in Part 2 (overall performance) by treatment in Figure3(b). The average number of correct answers is 36.3 and 36.4 in \textit{Gain} and \textit{Loss}, respectively. Working on part \textit{Easy} first and on part \textit{Hard} second (treatment \textit{Gain}) leads to similar overall scores as working on part \textit{Hard} first and on part \textit{Easy} second (treatment \textit{Loss}). Hence, there is no evidence for order effects in my experiment.

After subjects worked on Part 1 of the IQ test (the first 24 tasks), I document a substantial difference in performance between treatments \textit{Gain} and \textit{Loss}. The average number of correctly solved matrices is 20.7 in treatment \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.

My experiment introduces a shock to subjects’ self-image by affecting their score in Part 1. I define a shock by comparing subjects’ total number of correctly solved matrices (score in Part 2) and an extrapolated number of correctly solved matrices, i.e., the number of matrices they would have correctly solved if they carried on the same performance ($2 \times$... \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.

My experiment introduces a shock to subjects’ self-image by affecting their score in Part 1. I define a shock by comparing subjects’ total number of correctly solved matrices (score in Part 2) and an extrapolated number of correctly solved matrices, i.e., the number of matrices they would have correctly solved if they carried on the same performance ($2 \times$... \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.

My experiment introduces a shock to subjects’ self-image by affecting their score in Part 1. I define a shock by comparing subjects’ total number of correctly solved matrices (score in Part 2) and an extrapolated number of correctly solved matrices, i.e., the number of matrices they would have correctly solved if they carried on the same performance ($2 \times$... \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.

My experiment introduces a shock to subjects’ self-image by affecting their score in Part 1. I define a shock by comparing subjects’ total number of correctly solved matrices (score in Part 2) and an extrapolated number of correctly solved matrices, i.e., the number of matrices they would have correctly solved if they carried on the same performance ($2 \times$... \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.

My experiment introduces a shock to subjects’ self-image by affecting their score in Part 1. I define a shock by comparing subjects’ total number of correctly solved matrices (score in Part 2) and an extrapolated number of correctly solved matrices, i.e., the number of matrices they would have correctly solved if they carried on the same performance ($2 \times$... \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.

My experiment introduces a shock to subjects’ self-image by affecting their score in Part 1. I define a shock by comparing subjects’ total number of correctly solved matrices (score in Part 2) and an extrapolated number of correctly solved matrices, i.e., the number of matrices they would have correctly solved if they carried on the same performance ($2 \times$... \textit{Gain} and 15.6 in treatment \textit{Loss}. The difference in performance between treatments is highly statistically significant. In Figure3(a), I illustrate the distributions of performance in Part 1 by treatment.
The distributions of the performance shock are shown in Figure 4.1. The difference in shock distributions is highly statistically significant (p<0.001). Moreover, in absolute terms, performance shocks in Gain and Loss do not differ significantly (p=0.904) which indicates their symmetry for treatments Gain and Loss. Additionally, the performance shock I introduce in Part 1 aligns with the treatment assignment. As shown in Figure 4.1 there are no overlapping values of shock for treatments Gain and Loss except for zeros which account for two observations in treatment Loss and only one observation in treatment Gain. Hence, the score in Part 1 can act as a precise continuous individual-level measure of treatment that I will rely on in my analyses.

4.2 Beliefs about IQ

There are three belief elicitations in this experiment. I denote them Beliefs 1, 2, and 3, respectively. Belief 1 corresponds to the participants’ prior belief about their performance which I elicit before they start working on the IQ test. Belief 2 is a subjects’ first posterior belief which I elicit in the middle of the IQ test, namely after they worked on the first 24 out of 48 matrices and after the treatment variation took place. Belief 3 is a second posterior belief. Its elicitation takes place after subjects worked on all 48 matrices. I present summary statistics of subjects’ beliefs in Table 1 and distributions of beliefs in Figure 4.2.

I measure Belief 1 before the treatment variation affects the course of the experiment, hence creating a belief baseline for my analysis. Unsurprisingly, participants of treatments Loss and Gain do not differ in their prior beliefs about performance in the IQ test (p=0.325). On average, subjects believe they will solve 34.3 and 35.0 Raven’s Progressive Matrices
Figure 5: Belief distributions by treatment

Note: Figures (a)-(c) display distributions of Beliefs 1, 2, and 3 by treatment, respectively. The horizontal axis shows the total number of matrices that subjects expect to solve correctly (out of 48). The vertical axis shows density. I show the histograms of score distributions and the kernel density estimates for treatments *Gain* and *Loss* in each figure. I estimate density using Epanechnikov kernels with an optimal bandwidth.

Table 1: Summary statistics: Beliefs (by treatment)

<table>
<thead>
<tr>
<th>Belief</th>
<th>Loss</th>
<th>Gain</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief 1</td>
<td>34.30</td>
<td>35.03</td>
<td>p=0.325</td>
</tr>
<tr>
<td>Belief 2</td>
<td>31.58</td>
<td>36.07</td>
<td>p<0.001</td>
</tr>
<tr>
<td>Belief 3</td>
<td>34.05</td>
<td>32.27</td>
<td>p=0.224</td>
</tr>
<tr>
<td>N</td>
<td>64</td>
<td>67</td>
<td>131</td>
</tr>
</tbody>
</table>

Note: I show mean values of Beliefs 1, 2 and 3 for treatments *Loss* and *Gain*. Beliefs 1, 2 and 3 indicate subjects’ guesses about their number of correctly solved matrices (0 to 48). I compare distributions of Beliefs 1, 2 and 3 between treatments and report two-sided MWU test p-values.

My treatment manipulation is designed to affect Belief 2. I shift participants’ beliefs in the positive direction in treatment *Gain*, such that their Belief 2 is more optimistic than their Belief 1. In treatment *Loss*, on the contrary, participants update their beliefs negatively, i.e., Belief 2 is less optimistic than Belief 1. I find a highly significant difference in Belief 2 between subjects from *Gain* and *Loss* (p<0.001).
I define the belief difference as the difference between the first posterior beliefs about the IQ and the prior beliefs about the IQ: (Belief 2 - Belief 1). Hence, positive belief difference implies updating beliefs positively, i.e., subjects thinking they will solve more matrices than they initially assumed. Negative belief difference, vice versa, refers to updating beliefs negatively. Subjects expect to solve fewer matrices correctly than they thought before.

Subjects’ average belief difference is -2.72 in treatment *Loss* and 1.04 in treatment *Gain* (p<0.001). Thus, subjects (a) update beliefs about their performance in the IQ test according to their treatment assignment and (b) update their beliefs stronger if they experience a loss in the self-image domain. The latter result is statistically significant as well and provides evidence for asymmetric belief updating (p=0.018). Moreover, I find that these results hold on an individual level. Subjects in both treatments update their beliefs weaker than the performance shock they experience. Subjects’ belief difference is 4.07 matrices lower in treatment *Gain* and 2.47 higher in treatment *Loss* than the performance shock they experience.

According to previous findings, individuals hold motivated beliefs, dislike updating their beliefs negatively and react to noisy negative signals much weaker than to the positive ones (Coutts, 2019; Eil and Rao, 2011; Golman et al., 2017; Zimmermann, 2020). In contrast to those findings, subjects in my experiment update stronger in absolute terms when facing a negative shock to their self-image than a positive one. This result is in line with subjects’ inclination to avoid a possible disappointment at the end of the experiment. I discuss the mechanism which could lead to these patterns in belief updating in Section 5.

Under-confidence about IQ I compare subjects’ prior beliefs about their IQ and their actual performance in the IQ test. Contrary to the consensus in economic and psychological literature, I detect significant under-confidence using the Wilcoxon matched-pairs signed-ranks test (p=0.044). On average, participants believe they will solve 1.7 matrices fewer than they do. The degree of under-confidence in the IQ domain does not vary between treatments (p=0.721). Furthermore, subjects remain under-confident after they have completed the task, i.e., all 48 matrices. While the average performance results in 36.4 correct answers, the average Belief 3 is only 33.1 correct answers, and the difference is highly statistically significant (Wilcoxon matched-pairs signed-ranks test, p<0.001). The degree of under-confidence does not differ significantly between treatments (p=0.258). Crucially, this under-confidence is intelligence-specific. The survey measure of confidence, based on 11 real-effort slider tasks, shows that subjects are significantly overconfident (Wilcoxon matched-pairs signed-ranks test, p<0.001) and expect to solve 1.52 tasks more correctly than they do.

In Figure 6, I display kernel density estimates for subjects’ total performance along with their prior and second posterior beliefs about it. Prior beliefs are unaffected by treatment assignment by design. Second posterior beliefs (Belief 3) are elicited at the end of the experiment.
experiment, i.e., after subjects observed and worked on all matrices.\footnote{I do not compare their total performance and Belief 2 because Belief 2 is directly affected by treatment, which leads to positive or negative belief shocks in treatments \textit{Gain} and \textit{Loss}, respectively.} In Figure 6, I observe that belief distributions are more left-skewed than the distribution of total scores.

In belief elicitation instructions, I gave subjects an overview of the performance of the reference sample, where, among other information\footnote{See detailed screenshots in Appendix C.} I included the following statements: (a) no previous participant solved all 48 matrices, (b) the average participant solved 39 matrices, and (c) all previous participants solved at least 20 matrices or more. Subjects could see these statements in all belief elicitations. Interestingly, 1.5\% and 5.3\% of subjects still reported their perceived number of correct answers to be less than 20 in Beliefs 1 and 3, respectively. Moreover, 63.4\% and 68.7\% of them thought they would perform worse than an average participant of the reference sample (i.e., solve less than 39 matrices) in Beliefs 1 and 3, respectively.

In Result 1, I summarize the findings of belief updating.

\textbf{Result 1. (Belief updating)}

\begin{itemize}
 \item[(a)] \textit{Subjects have on average a negative belief difference in treatment Loss and a positive belief difference in treatment Gain.}
 \item[(b)] \textit{Subjects in treatment Loss update their beliefs stronger in absolute terms than subjects in treatment Gain.}
\end{itemize}
(c) Subjects are on average under-confident in their beliefs about their performance. The degree of under-confidence does not differ between treatments.

I find that subjects update their beliefs asymmetrically indicating that subjects hold motivated beliefs in the intelligence domain. This effect is, however, in the opposite direction as postulated in Hypothesis 2. Subjects in treatment Loss update their beliefs stronger than subjects in treatment Gain. While this result contrasts previous findings in the literature, I offer a simple possible explanation that is also in line with under-confidence and reference-dependence in the intelligence domain in Section 5.

4.3 Willful ignorance

In this subsection, I analyze subjects’ willingness to pay to acquire feedback. The WTP measure varies between -100 ECU and 100 ECU, where -100 means that an individual certainly wants no feedback, 100 implies that an individual definitely wants feedback, and 0 corresponds to a 50% chance of getting feedback.

![Figure 7: Willingness-to-pay for feedback](image)

Note: This Figure displays a histogram of the willingness-to-pay to receive feedback. The dashed line corresponds to the density estimates with Epanechnikov kernels and an optimal bandwidth.

On average, subjects reported a negative willingness to pay of -9.5 ECU. I show the distribution of the WTP in Figure 7. 42.0% of subjects reported a positive willingness-to-pay for feedback, implying they were ready to forego monetary benefits to increase their chances of acquiring feedback. However, only 2.3% of all participants had a WTP of 100. In total, 28.2% of subjects reported a negative willingness-to-pay to receive feedback. Moreover, 10.7% of all participants had a willingness-to-pay of -100 that guarantees no feedback about their performance in the IQ test.

Result 2. (Willful ignorance)
(a) On average, subjects report a negative willingness-to-pay for self-image-relevant feedback. (b) 28.2% of subjects report a negative willingness-to-pay to acquire feedback. (c) 10.7% of subjects report a willingness-to-pay of -100 ECU that guarantees no feedback about their performance in the IQ test.

In line with Hypothesis I, a non-negligible share of participants has a negative WTP for feedback relevant to their self-image. Moreover, approximately one in ten participants chooses to avoid feedback with certainty.

4.4 Reference dependence of self-image concerns

Participants were on average willing to pay -7.7 ECU in treatment Gain and -11.3 ECU in treatment Loss but the difference is not statistically significant (p=0.814). I report summary statistics of the WTP by treatment in Table 2. The shares of subjects who reported a positive, zero, and negative WTP is similar in treatments Gain and Loss. My sample size can detect a difference in willingness-to-pay of 9.3 ECU with 80% power and a significance level of 5%. With a scale from -100 to 100 ECU, the minimal detectable size of 9.3 ECU accounts for only 4.65% of the maximal shift and thus represents a minimal economically significant effect size.

Table 2: Summary statistics: Willingness-to-pay for feedback (by treatment)

<table>
<thead>
<tr>
<th>WTP</th>
<th>Loss</th>
<th>Gain</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>0.297</td>
<td>0.269</td>
<td>p=0.846</td>
</tr>
<tr>
<td>Zero</td>
<td>0.281</td>
<td>0.313</td>
<td>p=0.707</td>
</tr>
<tr>
<td>Positive</td>
<td>0.422</td>
<td>0.418</td>
<td>p=1.000</td>
</tr>
<tr>
<td>N</td>
<td>64</td>
<td>67</td>
<td>131</td>
</tr>
</tbody>
</table>

Note: This table shows shares of subjects whose reported WTP to receive feedback is negative, zero, and positive for treatments Loss and Gain. I compare these shares between treatments and report two-sided Fisher’s exact test p-values.

To analyze reference dependence of self-image concerns, I account for how subjects update their beliefs when analyzing their WTP. I design treatments Gain and Loss to shift subjects’ first posterior beliefs about their performance in the IQ test (Belief 2) by influencing their performance in Part 1. Hence, subjects endogenously update their beliefs taking into account their exogenous prior beliefs and an exogenous shock to their score in Part 1. In Table 3, I conduct 2SLS regressions to analyze the impact of beliefs on willingness-to-pay for feedback. I estimate the following regression:

\[WTP_i = \alpha + \beta (\text{Belief difference})_i + \gamma (\text{Belief 1})_i + \varepsilon_i, \]

which is equivalent to
\[WTP_i = \alpha + (\gamma - \beta)(\text{Belief 1})_i + \beta (\text{Belief 2})_i + \varepsilon_i. \]

I estimate the effect of belief difference on the willingness to pay for feedback on an individual level \((i)\). The prior belief about the performance in the IQ test is exogenous. It is a proxy for the subjects’ ability, and I elicit it before the treatment variation happens. The endogeneity concern arises with respect to Belief 2. Since I find evidence for motivated beliefs in my experimental data, I expect subjects to make decisions to update from Belief 1 to Belief 2 endogenously. Arguably, there might be unobservable individual effects that influence subjects’ belief difference through Belief 2 and could be correlated with the error term. One likely candidate is the degree of optimism about the performance in Part 1 that can be potentially associated with belief updating and willingness to pay for feedback. Therefore, I instrument belief difference with the score in Part 1. Additionally, I include Belief 1 in both stages to account for differences in WTP for subjects with different levels of perceived ability.\(^{17}\)

Relevance In the first stage, Belief 2 forms under the influence of two main criteria: previous beliefs about IQ and an exogenous shock introduced by the treatment. As I discussed in Section 4.1, the treatment shock affects subjects not only by treatment but also individually. Hence, using the score in Part 1 as an instrument provides me greater precision on an individual level.

Belief difference is strongly correlated with the score in Part 1. The correlation coefficient is 0.41 and highly statistically significant \((p<0.001)\). This correlation emerges through the correlation between the score in Part 1 and Belief 2 \((\text{corr}=0.47, p<0.001)\) but not between the score in Part 1 and Belief 1 \((\text{corr}=0.13, p=0.134)\).

Exogeneity For the IV approach to be valid, the instrumental variable should be exogenous. In the discussed setup, the score in Part 1 should influence willingness-to-pay for feedback only through Belief 2.

The score in Part 1 is unobservable to subjects. They observe the complexity of the tasks in Part 1 and receive no additional signal about their performance. Hence, the only available information they have about the score in Part 1 is their perceived performance in Part 1. Since subjects’ perceived performance in Part 1 is fully reflected in Belief 2, there is no other channel through which score in Part 1 influences WTP for feedback except Belief 2. I rely on the assumption of the maximal effort provision in the IQ test that, as discussed in Section 4.1, is consistent with the observed performance.

Interpretation On average, both the score in Part 1 and Belief 1 have a strong and highly significant impact on belief difference. The F statistic of 39.72 indicates that the score in

\(^{17}\)My results are robust to excluding Belief 1 as presented in Table A2.
Table 3: Instrumental variable approach: Willingness-to-pay for feedback

(a) First stage

<table>
<thead>
<tr>
<th>Dependent variable: Belief difference</th>
<th>Score in Part 1</th>
<th>0.782***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0.124)</td>
</tr>
<tr>
<td>Belief 1</td>
<td>-0.384***</td>
<td>(0.078)</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.734</td>
<td>(3.252)</td>
</tr>
<tr>
<td>N</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>F statistic</td>
<td>39.72</td>
<td></td>
</tr>
</tbody>
</table>

(b) Second stage

<table>
<thead>
<tr>
<th>Dependent variable: WTP</th>
<th>Belief difference</th>
<th>2.966**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Belief difference</td>
<td>(1.375)</td>
</tr>
<tr>
<td>Belief 1</td>
<td>0.773</td>
<td>(0.676)</td>
</tr>
<tr>
<td>Constant</td>
<td>-33.942</td>
<td>(22.952)</td>
</tr>
<tr>
<td>N</td>
<td>131</td>
<td></td>
</tr>
</tbody>
</table>

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are in parentheses. In these tables, I present the instrumental variable regression estimated via 2SLS. I report results of the first stage in Table (a) and results of the second stage in Table (b).

Part 1 is a strong instrument. According to the first-stage results presented in Table 3(a), one additional correctly solved matrix increases belief difference by approximately 0.8 matrices. The results are highly statistically significant.

The second stage shows the impact of the prior beliefs and the belief difference on the willingness to pay to acquire self-image-relevant feedback. I document that one standard deviation increase in belief difference leads to a statistically significant increase in willingness-to-pay for feedback by 18.1 ECU. Prior beliefs about subjects’ ability do not affect willingness-to-pay for self-image-relevant feedback significantly.

Result 3. (Reference dependence)

(a) A standard deviation increase in belief difference leads to a statistically significant increase in willingness-to-pay for feedback by on average 18.1 ECU.

(b) Prior beliefs about subjects’ own ability do not affect willingness-to-pay for self-image-relevant feedback significantly.

(c) The difference in willingness-to-pay between participants of treatments Gain and Loss is not statistically significant (p = 0.814).

In line with Hypothesis 3, I find that participants’ belief difference influences willingness-to-pay for feedback. However, contrary to Hypothesis 3, higher belief difference leads to higher willingness-to-pay. It indicates that participants who expect a gain in self-image are, on average, more willing to acquire information than those who, on average, expect a loss in their self-image. Indeed, subjects who expect bad news are more likely to avoid information than those who expect good news.

Importantly, this finding is belief-driven. A fixed performance shock introduced by the treatment assignment has no significant impact on subjects’ average willingness to receive feedback. However, treatments affect subjects’ beliefs about their performance in the IQ test asymmetrically. As discussed in Section 4.2, subjects update beliefs weaker when they
expect a gain in self-image than when they expect a loss in self-image. Belief differences then lead to differences in willingness-to-pay on an individual level resulting in the higher WTP to receive feedback the larger the belief difference becomes.

4.5 Loss aversion in self-image concerns

To analyze whether loss aversion applies to self-image concerns, I focus on subjects with marginal perceived gains and losses. I apply a regression discontinuity design (RDD) to estimate local average treatment effects. Specifically, I use kink RDD. I aim at capturing the effect of small belief differences on willingness-to-pay to acquire feedback. Loss aversion implies a kink in incentives to receive feedback. Hence, I adjust my design to capture a kink, not a discontinuity. I present the results in Table 4.

Table 4: Regression discontinuity design: Willingness-to-pay for feedback

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDD estimates</td>
<td>-0.949</td>
<td>-1.894</td>
<td>-4.381</td>
</tr>
<tr>
<td>(12.299)</td>
<td>(12.462)</td>
<td>(10.650)</td>
<td></td>
</tr>
<tr>
<td>Covariates</td>
<td>none</td>
<td>treatment</td>
<td>treatment and individual characteristics</td>
</tr>
<tr>
<td>N</td>
<td>86</td>
<td>86</td>
<td>86</td>
</tr>
</tbody>
</table>

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are in parentheses. In this table, I present kink RDD local linear estimates with Epanechnikov kernels and a bandwidth of 5. In column (1), there are no additional control variables. In column (2), I control for treatment assignment. In column (3), I control for treatment assignment and individual characteristics. Individual characteristics include age, gender, occupation, field of study, monthly budget and spending, experience in laboratory experiments, number of correctly answered control questions, current GPA, high school GPA and IQ test results, measures of risk aversion, time preferences, overconfidence and intensity of social and self-image concerns. The reported number of observations indicates how many observations were actually used given a particular bandwidth selection criterion. Estimations are based on all 131 observations.

I find no evidence for loss aversion in self-image concerns. Subjects around the cut-off, i.e., those with belief differences close to zero, do not differ significantly in their willingness to pay to acquire self-image-relevant feedback. This finding is robust for specifications presented in Table 4 and specifications with shorter and longer bandwidths reported in Table A3.

18 Proxies for ability include current GPA, high school GPA, and IQ test results.
19 See Section 2 and Table A1 for detailed explanation and summary statistics of all individual characteristics.
Result 4. (Loss aversion)

I find no significant difference in the effect of belief difference on willingness-to-pay for subjects with marginal gains and losses in self-image concerns.

In this experiment, I find no evidence that supports Hypothesis 4. I observe no significant difference in the effect of belief difference on willingness-to-pay for feedback between subjects with small positive and negative belief differences.

5 Mechanism

The belief formation I observe in my experiment is in contrast to the pre-registered hypotheses. In the following, I discuss a theoretical framework that offers an ex-post rationalization of those findings. The mechanism is in line with the idea of disappointment aversion (Gul, 1991) and follows closely the setup of Gollier and Muermann, 2010. Gollier and Muermann, 2010 propose that the decision-maker faces a trade-off between the ex-ante feelings and the risk of ex-post disappointment and chooses an optimal degree of optimism. In the context of my experiment, subjects may decide to be optimistic about their performance and derive utility ex-ante at the cost of a possible disappointment at the end of the experiment. Alternatively, participants may stay pessimistic in their beliefs throughout the experiment and likely be positively surprised at the end.

When reporting their Belief 2, subjects are aware that they only worked on Part 1 of the test, and there are 24 more matrices to solve. Arguably, subjects want to avoid a loss of self-image at the end of the experiment. Then, updating their beliefs weaker if participants are in gain can be optimal to avoid any possible disappointment at the end of the experiment. In other words, there might exist reference dependence not only within actions (willful ignorance) but also within the reported beliefs of the participants.

I observe that subjects who reported the WTP of -100 that guarantees that they do not receive feedback, were initially significantly more overconfident in the intelligence domain than others (p=0.024) and update their beliefs negatively (Belief 2 worse than Belief 1) in both treatments. The performance of these subjects in Parts 1 and 2 is not significantly different from other participants in the respective treatments (p=0.309 and p=0.287 in Parts 1 and 2, respectively). However, after they decide that they certainly do not want to receive feedback, their beliefs recover (Belief 3 better than Belief 2) in both treatments. Those findings might indicate that, at first, these subjects try to avoid disappointment in their performance by lowering the expectations, i.e., by adjusting their beliefs downwards. Yet, after they learn that they can avoid feedback altogether, they recover their beliefs accordingly.

I consider the following stylized environment to examine the mechanism of belief updating and incentives to acquire information that I observe in my experimental data.
Setup There are two stages denoted $t \in \{1, 2\}$. In $t = 1$, agents hold a prior belief about their type based on a self-image-relevant characteristic. In my experiment, this self-image-relevant characteristic is the number of correctly solved matrices in the IQ test. In $t = 2$, they face an exogenous shock to this characteristic, update their beliefs in response to the shock and choose whether to acquire or avoid information that affects their self-image.

I populate my environment with dual-self agents who derive reference-dependent utility from self-image. The concept of dual selves distinguishes the “rule chooser” and the “rule user”, or a rational and an emotional self, for each agent (Bénabou and Tirole, 2002; Eil and Rao, 2011; Fudenberg and Levine, 2006; Greiff, 2019). In my setup, the dual-self agent consists of two decision-makers: the rational self (R) and the emotional self (E). In $t = 2$, the emotional self shapes motivated beliefs, and the rational self takes beliefs as given and decides whether to acquire information.

An agent holds a prior belief about her type $n_1 = n \in [0, N]$ in period $t = 1$. She derives utility

$$\phi_1(n_1) = u(n_1),$$

where $u(\cdot)$ is an increasing and differentiable utility function from self-image. In $t = 2$, agents experience an exogenous self-image shock $s \in (0, \bar{s})$ with $\bar{s} < 1/2$ which can influence their perceived type either positively or negatively. Agents perceive this shock with a degree of optimism $\alpha \in [-a, a]$ with $a < 1$. Their motivated posterior beliefs are $n_{2m}^{Gain} = [1 + (1 + \alpha)s]n > n_1$ if they are exposed to a positive shock, and $n_{2m}^{Loss} = [1 - (1 - \alpha)s]n < n_1$ if they are exposed to a negative one. Essentially, the agent’s beliefs are influenced by a shock s and the degree of optimism α determines the agent’s sensitivity to this shock. I call agents “optimistic” when $\alpha > 0$ because it corresponds to overestimating the positive shock and underestimating the negative one. I refer to agents as “neutral” if $\alpha = 0$ and “pessimistic” if $\alpha < 0$.

Belief updating In my experiment, subjects do not know about the possibility of acquiring or avoiding feedback before they arrive at the respective decision screen. Hence, when reporting Belief 2, I assume that their status quo is that they will receive feedback about their performance in the IQ test. It is plausible to assume that, without any additional indication, individuals who work on an IQ test would expect to receive results upon completing the test.

The emotional self E endogenously chooses an optimal degree of optimism, while the rational self R takes it as given. E knows that R holds motivated beliefs n_{2m} and that the agent will receive information about her ability and will have to update to n_{2u} (unmotivated beliefs). Hence, her posterior beliefs will become $n_{2u}^{Gain} = (1 + s)n$ if she is exposed to a positive shock, and $n_{2u}^{Loss} = (1 - s)n$ if she is exposed to a negative one. Furthermore, E knows that R will experience losses whenever $n_{2m} < n_1$ or $n_{2u} < n_{2m}$, and gains otherwise.
Therefore, E’s objective is to choose \(\alpha \) in the best interest of R. On the one hand, E wants to maximize the gain or minimize the loss when R updates her beliefs from \(n_1 \) to \(n_{2m} \). On the other hand, E takes into account maximizing gains or minimizing losses from R updating from \(n_{2m} \) to \(n_{2u} \). First, the emotional self maximizes the following utility function with respect to \(\alpha \):

\[
\phi_{2E}(n_1, n_{2m}, n_{2u}|\text{information}) = u(n_{2u}) + I_{Loss}(n_{2u} - n_{2m}) + I_{Loss}(n_{2m} - n_1),
\]

where \(I_{Loss} \) is an index function which equals \(\lambda > 1 \) whenever its argument is negative and one otherwise. I assume that agents’ reference point is their prior belief about their type \(n_1 \). Hence, negative deviations from \(n_1 \) have a larger absolute impact on utility than equally-sized positive deviations.

Proposition 1. Agents who are exposed to the positive self-image shock are non-optimistic \((\alpha \in [-1, 0])\).

Proof. See Appendix B.1 for the proof.

Essentially, the agent with a positive shock to her self-image will experience a gain when she updates from \(n_1 \) to \(n_{2m} \). Depending on the degree of optimism the emotional self chooses, this gain may be relatively small if the agent’s beliefs are pessimistic and relatively large if her beliefs are optimistic. Additionally, she may experience a gain or a loss when she updates from \(n_{2m} \) to \(n_{2u} \). Her emotional self wants her to avoid this potential loss and hence keeps her motivated beliefs non-optimistic to avoid the disappointment when updating from \(n_{2m} \) to \(n_{2u} \).

Then, conditional on receiving information about their performance, agents’ utility with the optimal degree of optimism is

\[
\phi_{2}^{Gain}(n_1, n_{2u}|\text{information}, \alpha^*) = u(n_{2u}) + (n_{2u} - n_1).
\]

Next, I examine how agents with a negative self-image shock update their beliefs. I summarize my findings in Proposition 2.

Proposition 2. Agents who are exposed to the negative self-image shock are non-pessimistic \((\alpha \in (0, 1])\).

Proof. See Appendix B.2 for the proof.

The intuition behind this finding is as follows. The agent with a negative shock to her self-image will experience a loss when she updates from \(n_1 \) to \(n_{2m} \). If her beliefs are pessimistic, this perceived loss will be relatively large, i.e., larger than the shock \(s \). Conversely, if her beliefs are optimistic, her perceived loss is relatively small. Additionally, she may experience
a gain or a loss when she updates from n_{2m} to n_{2u}. Since losses have a stronger negative impact on the agent’s utility than gains of the same size, the agent’s emotional self wants her to avoid the “excessive” potential utility loss when updating from n_1 to n_{2m}. The additional utility of having the gain when updating from n_{2m} to n_{2u} cannot compensate this loss. Therefore, the agent’s motivated beliefs are non-pessimistic.

Then, conditional on receiving information about their performance, agents’ utility with the optimal degree of optimism is

$$
\phi^\text{Loss}_2(n_1, n_{2u}|\text{information}, \alpha^*) = u(n_{2u}) + \lambda(n_{2u} - n_1).
$$

Incentives to acquire information The rational self R learns about the possibility of choosing whether to acquire or avoid information. She chooses to acquire information whenever her expected utility from acquiring information is higher than from avoiding it, conditional on an optimal degree of optimism. If the agent decides to acquire information, she has to forego the utility from her optimism α and perceive the performance shock objectively. If the agent acquires the information, her utility is

$$
\phi_2(n_1, n_{2u}|\text{information}, \alpha^*) = u(n_{2u}) + I_{\text{Loss}}(n_{2u} - n_1).
$$

Agents choose to acquire information whenever

$$
\phi_2(n_1, n_{2u}|\text{information}, \alpha^*) \geq \phi_2(n_1, n_{2m}|\text{no information}, \alpha^*).
$$

I analyze the optimal information avoidance for agents in *Gain* and *Loss* separately. I summarize my findings of the incentives to acquire information for agents who experience a positive shock to their self-image in Proposition 3.

Proposition 3. Agents who are exposed to the positive self-image shock acquire information conditional on their optimal degree of optimism ($\alpha^* \in [-1, 0]$).

Proof. See Appendix B.3 for the proof.

Agents who are exposed to the positive self-image shock update their beliefs non-optimistically. Therefore, acquiring feedback improves their utility from self-image and yields a gain due to shifting beliefs from n_{2m} to $n_{2u} \geq n_{2m}$.

I proceed to analyze the incentives to acquire information for agents with a negative shock to their self-image. I show my findings in Proposition 4.

Proposition 4. Agents who are exposed to the negative self-image shock avoid information conditional on their optimal degree of optimism ($\alpha^* \in [0, 1]$).
Agents who are experiencing the negative self-image shock update their beliefs non-pessimistically. Hence, acquiring feedback would deteriorate their utility from self-image and yields a loss due to shifting beliefs from n_{2m} to $n_{2n} \leq n_{2m}$. Therefore, agents with a negative self-image shock optimally avoid information relevant to their self-image.

I analyze this mechanism in a stylized environment where dual-self agents are optimally non-optimistic if they experience the positive shock in their self-image and optimally non-pessimistic when they experience a negative shock to their self-image. These patterns in belief updating are in line with my experimental data. I observed that subjects in treatment $Gain$ update their beliefs by 4.07 matrices weaker than the positive performance shock they experience. In other words, if subjects in treatment $Gain$ were neutral agents with $\alpha = 0$, their belief difference would have been 4.07 matrices larger. It indicates that subjects in treatment $Gain$ are indeed pessimistic in their belief updating. Conversely, subjects in treatment $Loss$ are optimistic. They update their beliefs by 2.47 matrices weaker than the negative performance shock they experience. If subjects in treatment $Loss$ were neutral agents, their belief difference would have been 2.47 matrices lower.

In the proposed mechanism, the agents who experience a positive shock choose to acquire information, and the agents who experience a negative shock prefer to avoid it. This result is driven by the fact that the shock influences the optimal degree of optimism which in turn drives the updating process. My experimental data shows that an increase in the difference between the first posterior belief (Belief 2) and the prior belief (Belief 1) indeed leads to a higher willingness to pay for information.

6 Conclusion

This paper sheds light on the complexity and the dynamic nature of self-image concerns. Individual perception of oneself is naturally belief-driven. Thus, understanding the motivation behind updating beliefs in this domain and the channels through which beliefs shape one’s self-image is crucial for all decisions where self-image plays a role.

In this paper, I analyze individuals’ willingness to avoid self-image-relevant information after I expose them to positive or negative shocks in their self-image. I complement this approach with multiple elicitations of beliefs about their self-image. They allow me to observe the impact of positive and negative shocks on an individual level. In my experiment, I induce an exogenous shift in self-image by introducing treatments $Loss$ and $Gain$. Then, I ask subjects whether they are willing to acquire feedback about their performance and elicit their willingness-to-pay to do so and their beliefs about their performance.

As intended by the experimental design, individuals assigned to treatment $Gain$ have a positive change in beliefs driven by a positive shock to their performance. Individuals in treatment $Loss$, on the contrary, update their beliefs negatively in line with a negative exoge-
nous performance shock they experience. Interestingly, subjects in treatment _Loss_ update their beliefs stronger than subjects in treatment _Gain_. Moreover, subjects in both treatments are, on average, under-confident and pessimistic in their beliefs about their intelligence. I propose a stylized theoretical framework to analyze the underlying mechanism. A possible explanation for this pessimism in beliefs is disappointment aversion (Gollier and Muermann, 2010; Kőszegi and Rabin, 2007).

On average, subjects report a negative willingness to pay for feedback relevant to their self-image. Almost one-third of participants reported a negative willingness-to-pay to acquire feedback. Moreover, about one in ten subjects had the lowest possible willingness-to-pay that guarantees no feedback about their performance in the IQ test.

I document causal evidence for reference dependence of self-image concerns. I find that an increasing change in beliefs about the performance in the IQ test leads to a statistically significant increase in willingness to pay for feedback. Furthermore, prior beliefs about subjects’ ability do not affect willingness-to-pay for self-image-relevant feedback significantly. Hence, the difference in willingness-to-pay between participants of treatments _Gain_ and _Loss_ being not statistically significant is driven by asymmetric belief updating. Moreover, I find no significant difference in the effect of belief difference on willingness-to-pay for subjects with marginal gains and losses in self-image concerns.

Generally, this paper studies the implications of self-image for the demand for relevant feedback and the evolution of their self-image itself. My findings may have broad implications in various domains like health, finance, labor, prosocial and altruistic behavior, etc. While avoiding information may maximize the short-term utility of an individual, it may yield severe welfare losses in the long run or negatively affect individuals themselves as well as those around them. For example, managers may avoid helpful feedback to maintain their self-image as a professional. It hinders them from becoming better managers and potentially affects the performance of their entire team. Curating effective feedback systems can therefore be vital for the well-being of the firms. Charitable donors who often prefer to remain uninformed about the actual effectiveness of donations experience a short-term warm glow from their actions. However, making a more informed choice could lead to more effective use of their resources. Another prominent and recent example comes from the rising necessity of lesson and lecture recordings. Many teachers may be reluctant to watch them back, despite apparent benefits for improving their teaching style, to protect their ego. Detrimental effects of losses in self-image may be even more pronounced if individuals do not hold a strong prior in a particular domain. For example, new employees or students may be particularly vulnerable groups. Hence, the task allocators in the workplace and the designer of educational programs may regard the self-image effects and their possible consequences for feedback avoidance. Careful consideration of whether individuals experience gains or losses in self-image is crucial, as they can hinder individuals from acquiring relevant information.

My findings offer several avenues for future research. First, motivated belief updating
relies strongly on the subjects’ status quo in a given environment. Therefore, influencing subjects’ perception of the status quo may shed more light on the formation of motivated beliefs. Furthermore, individuals tend to internalize negative feedback weaker than positive one (Zimmermann, 2020). Combining this finding with the evidence from my experimental data on stronger belief updating in the presence of a negative signal but without feedback may be insightful. Moreover, I focus on intelligence as a self-image-relevant domain in this paper. However, many studies have previously documented that individuals derive self-image utility from a wide range of characteristics, e.g., beauty (Eil and Rao, 2011) or morality (Gneezy et al., 2020). Investigating whether individual behavior in case of gains and losses in other self-image-relevant domains follows similar patterns might be the next step towards a deeper understanding of how individuals perceive themselves.

References

Bleichrodt, Han, Jose Luis Pinto, and Peter P Wakker (2001). “Making descriptive use of prospect theory to improve the prescriptive use of expected utility”. In: *Management Science* 47.11, pp. 1498–1514.

Castagnetti, Alessandro and Renke Schmacker (2020). “Protecting the Ego: Motivated Information Selection and Updating”. In:

Falk, Armin, Anke Becker, Thomas J Dohmen, David Huffman, and Uwe Sunde (2016). “The preference survey module: A validated instrument for measuring risk, time, and social preferences”. In:

Gneezy, Uri, Silvia Saccardo, Marta Serra-Garcia, and Roel van Veldhuizen (2020). “Bribing the self”. In: *Games and Economic Behavior* 120, pp. 311–324.

Li, Jiawei, Stephen Leider, Damian R Beil, and Izak Duenyas (2020). “Running online experiments using web-conferencing software”. In: *Available at SSRN 3749551*.

Petrishcheva, Vasilisa, Gerhard Riener, and Hannah Schildberg-Hörisch (2020). “Loss aversion in social image concerns”. In:

Serra-Garcia, Marta and Nora Szech (2019). “The (in) elasticity of moral ignorance”. In:

A Additional tables

Table A1: Differences in individual characteristics in treatments *Gain* and *Loss*

<table>
<thead>
<tr>
<th>Individual characteristics</th>
<th>Variable type</th>
<th>Min</th>
<th>Max</th>
<th>Loss</th>
<th>Gain</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Continuous</td>
<td>18</td>
<td>49</td>
<td>25.844</td>
<td>24.985</td>
<td>0.362</td>
</tr>
<tr>
<td>Gender: 1 if female</td>
<td>Binary</td>
<td>0</td>
<td>1</td>
<td>0.656</td>
<td>0.522</td>
<td>0.156</td>
</tr>
<tr>
<td>Gender: 1 if diverse</td>
<td>Binary</td>
<td>0</td>
<td>1</td>
<td>0.000</td>
<td>0.015</td>
<td>1.000</td>
</tr>
<tr>
<td>Occupation: 1 if student</td>
<td>Binary</td>
<td>0</td>
<td>1</td>
<td>0.891</td>
<td>0.925</td>
<td>0.555</td>
</tr>
<tr>
<td>Field of study: 1 if economics</td>
<td>Binary</td>
<td>0</td>
<td>1</td>
<td>0.344</td>
<td>0.343</td>
<td>1.000</td>
</tr>
<tr>
<td>Field of study: 1 if psychology</td>
<td>Binary</td>
<td>0</td>
<td>1</td>
<td>0.016</td>
<td>0.030</td>
<td>1.000</td>
</tr>
<tr>
<td>Lab experience</td>
<td>Continuous</td>
<td>1</td>
<td>500</td>
<td>18.313</td>
<td>7.627</td>
<td>0.353</td>
</tr>
<tr>
<td>Current GPA</td>
<td>Continuous</td>
<td>1</td>
<td>4</td>
<td>2.207</td>
<td>2.230</td>
<td>0.969</td>
</tr>
<tr>
<td>High school GPA</td>
<td>Continuous</td>
<td>1</td>
<td>3.7</td>
<td>2.097</td>
<td>2.260</td>
<td>0.210</td>
</tr>
<tr>
<td>Monthly budget</td>
<td>Continuous</td>
<td>0</td>
<td>4000</td>
<td>532.359</td>
<td>505.299</td>
<td>0.434</td>
</tr>
<tr>
<td>Monthly spending</td>
<td>Continuous</td>
<td>0</td>
<td>1500</td>
<td>328.297</td>
<td>299.179</td>
<td>0.467</td>
</tr>
<tr>
<td>Control questions (# correct)</td>
<td>Continuous</td>
<td>1</td>
<td>3</td>
<td>2.781</td>
<td>2.896</td>
<td>0.155</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>Continuous</td>
<td>1</td>
<td>10</td>
<td>4.969</td>
<td>5.448</td>
<td>0.309</td>
</tr>
<tr>
<td>Overconfidence</td>
<td>Continuous</td>
<td>-6</td>
<td>10</td>
<td>2.063</td>
<td>1.000</td>
<td>0.066</td>
</tr>
<tr>
<td>Time preferences</td>
<td>Continuous</td>
<td>1</td>
<td>10</td>
<td>7.250</td>
<td>7.090</td>
<td>0.757</td>
</tr>
<tr>
<td>Social image concerns</td>
<td>Continuous</td>
<td>0</td>
<td>60</td>
<td>38.000</td>
<td>38.612</td>
<td>0.967</td>
</tr>
<tr>
<td>Loss aversion</td>
<td>Continuous</td>
<td>0</td>
<td>6</td>
<td>3.531</td>
<td>3.493</td>
<td>0.861</td>
</tr>
</tbody>
</table>

N 64 67 131

Note: I show summary statistics for subjects’ individual characteristics in treatments *Gain* and *Loss*. I report the mean, minimal and maximal values of each variable. I also display p-values for treatment comparison for each corresponding variable. I compare the distributions of the variables marked “Continuous” using two-sided MWU tests. I compare the distributions of the variables marked “Binary” using two-sided Fisher’s exact tests. Gender is a categorical variable (m/f/d). I test the differences between treatments by category. A detailed description of how I measure all individual characteristics is provided in Appendix C7 and C8 in English and German (original), respectively. Subjects’ occupation was originally elicited as binary and indicates if an individual is a student. Field of study is a categorical variable and contains multiple fields, namely, mathematics or science, medicine, psychology, law or social sciences, economics, other and “I do not study”. Following Abeler et al., 2019, I focus on economics and psychology. Lab experience indicates a self-reported number of economic experiments the subject has participated in. Please note that, despite the maximum of 500, 95% of subjects participated in 30 or fewer experiments. 79% of all subjects participated in 10 or fewer experiments. Current GPA and high school GPA reflect the standardized German grading system, with 1.0 corresponding to the best possible grade and 4.0 to the worst passing grade. Monthly budget and spending are measured in Euro, with fixed costs like rent already subtracted. Variable “Control questions” indicates the number of correctly answered control questions about the instructions of the current experiment (out of 3). Risk aversion, time preferences, and social image concerns are measured on an 11-point Likert scale (0-10). Larger reported values correspond to having a higher willingness to take risks, being more patient, and having stronger social image concerns, respectively. Overconfidence may vary between -11 and 11. Negative values of overconfidence correspond to under-confidence; Larger values imply stronger overconfidence. Self-image concerns is a measure that varies between -30 and 60 and indicates the intensity of self-image concerns, with larger values indicating stronger self-image concerns. Loss aversion may vary between zero and 6, and larger values mean stronger loss aversion.
Table A2: Instrumental variable approach robustness check: Willingness-to-pay for feedback

(a) First stage

| Dependent variable: Belief difference | Score in Part 1 | 0.686***
| | (0.116) | |
| | Constant | -13.303***
	(2.263)	
N	131	
F statistic	34.73	

(b) Second stage

| Dependent variable: WTP | Belief difference | 3.245**
| | (1.511) | |
| | Constant | -6.920
| | (4.272) | |
| N | 131 | |

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are in parentheses. In these tables, I present the instrumental variable regression estimated via 2SLS. I report results of the first stage in Table (a) and results of the second stage in Table (b).

Table A3: Regression discontinuity design robustness check: Willingness-to-pay for feedback

<table>
<thead>
<tr>
<th>RDD estimates</th>
<th>Bandwidth = 4</th>
<th>Bandwidth = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>RDD estimates</td>
<td>3.872</td>
<td>3.827</td>
</tr>
<tr>
<td>Covariates</td>
<td>none</td>
<td>treatment</td>
</tr>
<tr>
<td></td>
<td>and individual characteristics</td>
<td>and individual characteristics</td>
</tr>
<tr>
<td>N</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors are in parentheses. In this table, I present kink RDD local linear estimates with Epanechnikov kernels. In columns (1)-(3), I use a bandwidth of 4. In columns (4)-(6), I use a bandwidth of 6. In column (1), there are no additional control variables. In column (2), I control for treatment assignment. In column (3), I control for treatment assignment and individual characteristics. Individual characteristics include age, gender, occupation, field of study, monthly budget and spending, experience in laboratory experiments, number of correctly answered control questions, current GPA, high school GPA and IQ test results, measures of risk aversion, time preferences, overconfidence and intensity of social and self-image concerns. The reported number of observations indicates how many observations were actually used given a particular bandwidth selection criterion. Estimations are based on all 131 observations.

B Proofs

B.1 Proof of Proposition 1

For an agent exposed to a positive performance shock \((Gain)\), the emotional self maximizes the following utility with respect to the degree of optimism \(\alpha\):

\[
\phi_{2E}^{Gain}(n_1, n_2m, n_2u|\text{information}) = u((1+s)n) + I_{Loss}
\left((1+s)n - [1+(1+\alpha)s]n\right) + \left([1+(1+\alpha)s]n - n\right).
\]

Importantly, \(\phi_{2E}^{Gain}(n_1, n_2m, n_2u|\text{information})\) is non-differentiable at \((1+s)n - [1 + (1 + \alpha)s]n = 0\) or \(\alpha = 0\). It is because at \(\alpha = 0\), \(I_{Loss}\) switches between one and \(\lambda\), thus creating a kink in the utility function. Hence, I consider cases of \(\alpha > 0\) and \(\alpha \leq 0\) separately.

\(^20\)I examine the cases of \(\alpha = 0\) and \(\alpha < 0\) together because both for neutral and pessimistic agents \(I_{Loss}\) equals
Case \(\alpha > 0 \) The utility can be simplified and becomes
\[
\phi_{2E}^{Gain}(n_1, n_{2m}, n_{2u}|\text{information}) = u\left((1+s)n\right) + \lambda\left((1+s)n-[1+(1+\alpha)s]n\right) + \left([1+(1+\alpha)s]n-n\right).
\]
Notably,
\[
\frac{\partial}{\partial \alpha} \left|_{\alpha > 0} \phi_{2E}^{Gain}(n_1, n_{2m}, n_{2u}|\text{information})\right| = sn(1-\lambda) < 0.
\]
Hence, the agent's utility decreases in \(\alpha \) for \(\alpha > 0 \). Positive \(\alpha \) generates a relatively large gain when the agent updates from \(n_1 \) to \(n_{2m} \). However, it also leads to a loss while updating from \(n_{2m} \) to \(n_{2u} \). Since the agent dislikes losses more than she appreciates gains of the same size, larger \(\alpha \) affects the agent's utility negatively.

Case \(\alpha \leq 0 \) The utility can be simplified and becomes
\[
\phi_{2E}^{Gain}(n_1, n_{2m}, n_{2u}|\text{information}) = u\left((1-s)n\right) + \left((1-s)n-[1-(1-\alpha)s]n\right) + \lambda\left([1-(1-\alpha)s]n-n\right).
\]
for \(\alpha \leq 0 \). The agents' utility does not depend on the degree of optimism \(\alpha \). The agent is in gain while updating from \(n_1 \) to \(n_{2m} \) and from \(n_{2m} \) to \(n_{2u} \). Therefore, any \(\alpha \in [-1,0] \) is optimal.

B.2 Proof of Proposition 2

For an agent exposed to a negative performance shock (\(\text{Loss} \)), the emotional self maximizes the following utility with respect to the degree of optimism \(\alpha \):
\[
\phi_{2E}^{Loss}(n_1, n_{2m}, n_{2u}|\text{information}) = u\left((1-s)n\right) + I_{Loss}\left((1-s)n-[1-(1-\alpha)s]n\right) + \lambda\left([1-(1-\alpha)s]n-n\right).
\]
\(\phi_{2E}^{Loss}(n_1, n_{2m}, n_{2u}|\text{information}) \) is non-differentiable if \((1-s)n-[1-(1-\alpha)s]n = 0 \) or \(\alpha = 0 \). Therefore, I consider cases of \(\alpha \geq 0 \) and \(\alpha < 0 \) separately.

Case \(\alpha < 0 \) The expected utility can be simplified and becomes
\[
\phi_{2E}^{Loss}(n_1, n_{2m}, n_{2u}|\text{information}) = u\left((1-s)n\right) + \left((1-s)n-[1-(1-\alpha)s]n\right) + \lambda\left([1-(1-\alpha)s]n-n\right).
\]
The agent's utility increases in \(\alpha \) for \(\alpha < 0 \), since
\[
\frac{\partial}{\partial \alpha} \left|_{\alpha < 0} \phi_{2E}^{Loss}(n_1, n_{2m}, n_{2u}|\text{information})\right| = sn(\lambda - 1) > 0.
\]
Hence, negative \(\alpha \) generates a relatively large loss when the agent updates from \(n_1 \) to \(n_{2m} \). However, it also leads to a gain while updating from \(n_{2m} \) to \(n_{2u} \). Since the agent dislikes one, while for the optimistic agents \(I_{Loss} = \lambda \).
losses more than she appreciates gains of the same size, smaller α affects the agent’s utility negatively.

Case $\alpha \geq 0$ The utility can be simplified and becomes

$$\phi^{Loss}_{2E}(n_1, n_{2m}, n_{2u}|\text{information}) = u((1-s)n) + (1-s)n - n.$$

for $\alpha \geq 0$. The agents’ utility does not depend on alpha. The agent is in loss while updating from n_1 to n_{2m} and from n_{2m} to n_{2u}. Therefore, any $\alpha \in [0, 1]$ is optimal. Therefore, an agent with a negative performance shock is optimally non-pessimistic.

B.3 Proof of Proposition 3

The agent with a positive self-image shock acquires information about her performance whenever

$$u((1+s)n) + (1+s)n - n \geq u([1 + (1 + \alpha)s]n) + (1 + (1 + \alpha)s)n - n.$$

As established in Proposition 1, agents who experience a positive shock are optimally non-optimistic, i.e., have $\alpha^* \in [-1, 0]$. For any $\alpha^* \in [-1, 0]$, $u((1+s)n) \geq u([1 + (1 + \alpha)s]n)$ and $(1+s)n \geq [1 + (1 + \alpha)s]n$. Therefore, Condition 1 always holds. Hence, agents who are exposed to the positive self-image shock acquire information conditional on their optimal degree of optimism ($\alpha^* \in [-1, 0]$).

B.4 Proof of Proposition 4

The agent with a negative self-image shock acquires information about her performance whenever

$$u((1-s)n) + \lambda((1-s)n - n) \geq u([1 - (1-\alpha)s]n) + \lambda([1 - (1-\alpha)s]n - n).$$

As established in Proposition 2, agents who experience a positive shock are optimally non-pessimistic, i.e., have $\alpha^* \in [0, 1]$. For any $\alpha^* \in [0, 1]$, $u((1-s)n) \leq u([1 - (1-\alpha)s]n)$ and $(1-s)n \leq [1 - (1-\alpha)s]n$. Therefore, Condition 2 never holds. Hence, agents who are exposed to the negative self-image shock avoid information conditional on their optimal degree of optimism ($\alpha^* \in [0, 1]$).
C Instructions of the Experiment

C.1 General instructions: English

Please read the following instructions carefully! The amount of money you earn in this experiment strongly depends on your decisions. If you have any questions, please write a message to the experimenters in the chat. We will reply as soon as we can. During the experiment, it is not allowed to talk to other participants of the experiment or other people, use mobile phones or start other programs on the computer. Non-compliance with these rules will result in exclusion from the experiment and all payments. On the following pages we describe the exact procedure of the experiment.

In this experiment, we calculate your earnings using experimental currency units (talers). At the end of this experiment, all your earnings will be converted from talers to euro using the following exchange rate:

\[1 \text{ taler} = 5 \text{ cents}. \]

You will receive a fixed payment of 74 talers for participating in this experiment, which will be paid at the end of the experiment independent of your decisions in the experiment. Additionally, you receive an endowment of 100 talers which you might use in the course of the experiment. Please note that you receive your payments only upon completion of the entire experiment. In the following, there is a description of the exact experimental procedure.

Overview of the Experiment

This experiment consists of 48 tasks (24 tasks in Part 1 and 24 tasks in Part 2), which are often used to measure so-called fluid intelligence of a person. The fluid intelligence is an important part of the general intelligence of humans. These or similar tasks are also often used by companies in the context of recruitment procedures. Each task corresponds to a picture puzzle.

Each picture puzzle shows in its upper part a pattern in a box, in which a “piece of the puzzle” in the lower right corner is left out. Your task is to select one of the puzzle pieces listed below the box, which will logically fill the blank lower right corner of the pattern in the box. Please enter the number of the puzzle piece that you think fits best on the screen. The number of a puzzle piece is stated above each puzzle piece. There is always exactly one piece that fits best.

You have 30 seconds to complete each picture puzzle. For each correctly completed picture puzzle you receive one point. As commonly done with intelligence tests, correct answers are not paid extra. You will receive 0 points for each wrongly answered picture puzzle or if you do not enter the best fitting piece of the puzzle within 30 seconds.

All participants in the experiment work on exactly the same 48 picture puzzles
Example for a picture puzzle:

![Example Picture Puzzle]

described above. Each participant is randomly assigned to one of two groups: Group A or Group B. Throughout the whole experiment, all participants of both groups will solve exactly the same 48 picture puzzles, 24 in Part 1 and 24 in Part 2. Only the order in which the picture puzzles are processed differs between group A and B, which has an influence on the relative complexity of the parts. The group membership has no further meaning. In Parts 1 and 2 you belong to the same group.

Part 1 of the Experiment

Before you start working on the picture puzzles, there will be some screens with questions. Then, you work on 24 picture puzzles following the rules described above (30 seconds time per puzzle, 1 point for correct answers, 0 points otherwise, etc.). After you have completed all 24 picture puzzles in Part 1, there will be some screens with questions before we proceed to Part 2.

Part 2 of the Experiment

Part 2 of the experiment is very similar to Part 1. You work on 24 more picture puzzles following the same rules (30 seconds time per puzzle, 1 point for correct answers, 0 points otherwise, etc.).

End and Payment of the Experiment

After Part 2 of today’s experiment, there will be some more screens with information and questions before we proceed to the payment.

If you have any questions now, please write a message to the experimenters in the chat. We will reply as soon as we can.
Control questions

1. According to which rule will your earnings be converted from the experimental currency units (talers) to euro? (correct answer - c)
 (a) 1 taler = 1 cent
 (b) 1 taler = 3 cents
 (c) 1 taler = 5 cents
 (d) 1 taler = 10 cents

2. How many tasks are you going to work on? (correct answer - c)
 (a) 24
 (b) 30
 (c) 48
 (d) 60

3. How much time do you have to work on each picture puzzle? (correct answer - b)
 (a) 15 seconds
 (b) 30 seconds
 (c) 45 seconds
 (d) 60 seconds
C.2 General instructions: German (original)

In diesem Experiment berechnen wir Ihren Gewinn in Form von experimentellen Währungseinheiten (Taler). Am Ende des Experiments werden alle Ihre Gewinne unter Verwendung des folgenden Wechselkurses von Taler in Euro umgerechnet:

\[1 \text{Taler} = 5 \text{Cent} \]

Sie erhalten eine feste Zahlung von 74 Taler für die Teilnahme an diesem Experiment, die am Ende des Experiments unabhängig von Ihren Entscheidungen im Experiment ausgezahlt wird. Zusätzlich erhalten Sie eine Anfangsausstattung von 100 Taler, die Sie im Laufe des Experiments verwenden können. Bitte beachten Sie, dass Sie Ihre Zahlungen erst nach Abschluss des gesamten Experiments erhalten. Im Folgenden finden Sie eine Beschreibung des genauen Versuchsablaufs.

Überblick über das Experiment

Jedes Bilderrätsel zeigt im oberen Teil ein Muster in einem Kasten, bei dem ein "Puzzleteil" in der unteren rechten Ecke ausgelassen ist. Ihre Aufgabe ist es, eines der unter dem Kasten aufgeführten Puzzleteile auszuwählen, das die leere untere rechte Ecke des Musters im Kasten logisch ausfüllt. **Bitte geben Sie die Nummer des Puzzleteils ein, das Ihrer Meinung nach am besten in den Rahmen passt.**

Sie haben 30 Sekunden Zeit, um die einzelnen Bilderrätsel zu lösen. Für jedes richtig ausgefüllte Bilderrätsel erhalten Sie einen Punkt. **Wie bei Intelligenztests üblich, werden richtige Antworten nicht zusätzlich vergütet.** Sie erhalten 0 Punkte für jedes falsch beantwortete Bilderrätsel oder wenn Sie nicht innerhalb von 30 Sekunden das am besten passende Teil des Rätsels auswählen.

Alle Teilnehmenden des Experiments arbeiten an genau den gleichen 48 Bilderr-
Beispiel für ein Bilderrätsel:

Teil 1 des Experiments

Teil 2 des Experiments
Teil 2 des Experiments ist sehr ähnlich zu Teil 1. Sie bearbeiten 24 weitere Bilderrätsel nach den gleichen Regeln (30 Sekunden Zeit pro Rätsel, 1 Punkt für richtige Antworten, ansonsten 0 Punkte, usw.).

Ende und Bezahlung des Experiments
Nach Teil 2 des heutigen Experiments werden noch einige Seiten mit Informationen und Fragen angezeigt, bevor wir zur Bezahlung übergehen.

Wenn Sie jetzt noch Fragen haben, schreiben Sie bitte eine Nachricht an die ExperimentatorInnen im Chat.
Wir werden so schnell wie möglich antworten.

Kontrollfragen

1. Nach welcher Regel wird Ihr Gewinn von der experimentellen Währungseinheit (Taler) in Euro umgerechnet? (richtige Antwort - c)

 (a) 1 Taler = 1 Cent
 (b) 1 Taler = 3 Cent
 (c) 1 Taler = 5 Cent
 (d) 1 Taler = 10 Cent

2. Wie viele Aufgaben werden Sie bearbeiten? (richtige Antwort - c)

 (a) 24
 (b) 30
 (c) 48
 (d) 60

3. Wie viel Zeit haben Sie für die Bearbeitung der einzelnen Bilderrätsel? (richtige Antwort - b)

 (a) 15 Sekunden
 (b) 30 Sekunden
 (c) 45 Sekunden
 (d) 60 Sekunden
C.3 Belief elicitation: English

Please answer the question below.

How many picture puzzles (out of 48) do you think you will solve correctly?

You have a chance of winning 20 thalers. Truthful reporting will maximize your chances of winning.

In 2014, 413 people worked on exactly the same 48 picture puzzles in the DiCE Lab. In the figure below, you can see how many participants gave how many correct answers.

To summarize:

- **None** of previous participants solved all 48 picture puzzles.
- **An average** participant solved 39 picture puzzles.
- **All** previous participants solved at least 20 picture puzzles or more.

Please note: Carefully and honestly answering the question is in your best interest. An honest answer increases the probability of earning the bonus of 20 thalers.

The precise payment rule details are available by request at the end of the experiment. Please indicate your answer by clicking on the slider. You can adjust the position afterwards.

How many picture puzzles (out of 48) do you think you will solve correctly?

<table>
<thead>
<tr>
<th>No picture puzzle</th>
<th>All picture puzzles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
</tbody>
</table>

Please click on the slider to indicate your assessment. You can still change your decision afterwards.

Figure A1: Belief elicitation screen
Please answer the question below.

How many picture puzzles (out of 48) do you think you will solve correctly?

You have a chance of winning 20 thalers. Truthful reporting will maximize your chances of winning.

In 2014, 413 people worked on exactly the same 48 picture puzzles in the DICE Lab. In the figure below, you can see how many participants gave how many correct answers.

To summarize:

- None of previous participants solved all 48 picture puzzles.
- An average participant solved 39 picture puzzles.
- All previous participants solved at least 20 picture puzzles or more.

Please note: Carefully and honestly answering the question is in your best interest. An honest answer increases the probability of earning the bonus of 20 thalers.

The precise payment rule details are available by request at the end of the experiment. Please indicate your answer by clicking on the slider. You can adjust the position afterwards.

How many picture puzzles (out of 48) do you think you will solve correctly?

No picture puzzle (0) All picture puzzles (48)

I think, I will solve 38 out of 48 picture puzzles correctly. This means that I think I will perform better than 38.01% of previous participants.

Continue

Figure A2: Belief elicitation screen (answered)
Bitte beantworten Sie die untenstehende Frage.

Wie viele Bilderrätsel von insgesamt 48 denken Sie, werden Sie korrekt lösen?

Sie haben die Chance **20 Taler** zu gewinnen. Eine wahrheitsgemäße Angabe maximiert Ihre Gewinnchancen.

Im Jahr 2014 arbeiteten 413 Personen an genau denselben 48 Bilderräteln im DICE Lab. In der Abbildung unten können Sie sehen, wie viele Teilnehmende wie viele richtige Antworten abgegeben haben.

Zusammenfassend

- Keine(r) der damaligen Teilnehmenden löste alle 48 Bilderrätsel.
- Der/die durchschnittliche Teilnehmende löste 39 Bilderrätsel.
- Alle damaligen Teilnehmenden lösten mindestens 20 Bilderrätsel oder mehr.

Bitte beachten Sie: Eine sorgfältige und ehrliche Beantwortung der Frage ist in Ihrem besten Interesse. Eine ehrliche Antwort erhöht die Wahrscheinlichkeit, dass Sie den Bonus von **20 Taler** verdienen.

Wie viele Bilderrätsel von insgesamt 48 denken Sie, werden Sie korrekt lösen?

Gar kein Bilderrätsel

(0) Alle Bilderrätsel

(48)

Bitte klicken Sie auf den Schiebereglern, um Ihre Einschätzung anzugeben. Sie können Ihre Entscheidung im Anschluss noch verändern.

Figure A3: Belief elicitation screen
Bitte beantworten Sie die untenstehende Frage.

Wie viele Bilderrätsel von insgesamt 48 denken Sie, werden Sie korrekt lösen?

Sie haben die Chance 20 Taler zu gewinnen. Eine wahrheitsgemäße Angabe maximiert Ihre Gewinnchancen.

Im Jahr 2014 arbeiteten 413 Personen an genau denselben 48 Bilderrätseln im DICE Lab. In der Abbildung unten können Sie sehen, wie viele Teilnehmende wie viele richtige Antworten abgegeben haben.

Zusammenfassend

- Keine(r) der damaligen Teilnehmenden löste alle 48 Bilderrätsel.
- Der/die durchschnittliche Teilnehmende löste 39 Bilderrätsel.
- Alle damaligen Teilnehmenden lösten mindestens 20 Bilderrätsel oder mehr.

Bitte beachten Sie: Eine sorgfältige und ehrliche Beantwortung der Frage ist in Ihrem besten Interesse. Eine ehrliche Antwort erhöht die Wahrscheinlichkeit, dass Sie den Bonus von 20 Taler verdienen.

Wie viele Bilderrätsel von insgesamt 48 denken Sie, werden Sie korrekt lösen?

Gar kein Bilderrätsel (0) Alle Bilderrätsel (48)

Ich denke, ich werde 38 von 48 Bilderrätseln richtig lösen. Das bedeutet, ich denke, dass ich besser als 38.01% der früheren Teilnehmenden abschneiden werde.

Figure A4: Belief elicitation screen (answered)
Feedback on your fluid intelligence at the end of the experiment

Your decision on this page affects your chances of getting feedback on your fluid intelligence at the end of the experiment (i.e., after you have completed all 48 picture puzzles) and seeing how well you actually performed.

What is your willingness to pay to get feedback?

- Please indicate an amount between -100 thalers and 100 thalers.
- Once you have made your decision whether or not you wish to receive feedback on your fluid intelligence, you cannot change it. This also means, if you do get feedback, you cannot avoid it, and we will show you how well you actually performed.
- With a willingness to pay of 0 thalers, there is a 50% chance to get feedback.
- If you want to increase your chance of getting feedback, consider reporting positive willingness to pay for feedback.
- If you want to increase your chance of not getting feedback, consider reporting negative willingness to pay for feedback.
- The higher your willingness to pay is, the more likely you get feedback on your fluid intelligence.

Further explanations:

How does it work exactly?

We draw a random price of feedback between -100 ECU and 100 ECU. If your willingness to pay to get feedback is equal or greater than the price, you get feedback and pay the price. If your willingness to get feedback is smaller than the random price, you do not get feedback and keep your endowment. Please note that both a random price of feedback and your willingness to pay for it can be either positive or negative.

This mechanism ensures that answering questions honestly is in your best interest.

Examples

Note: Carefully and honestly answering the question is in your best interest.

How much are you willing to pay to see your results at the end of the experiment?

I definitely do not want to see my results

-100

0

100

I definitely want to see my results

Please click on the slider to indicate your willingness to pay. You can still change your decision afterwards.

Figure A5: Willingness-to-pay for feedback screen
Feedback on your fluid intelligence at the end of the experiment

Your decision on this page affects your chances of getting feedback on your fluid intelligence at the end of the experiment (i.e., after you have completed all 48 picture puzzles) and seeing how well you actually performed.

What is your willingness to pay to get feedback?

- Please indicate an amount between -100 thalers and 100 thalers.
- Once you have made your decision whether or not you wish to receive feedback on your fluid intelligence, you cannot change it. This also means, if you do get feedback, you cannot avoid it, and we will show you how well you actually performed.
- With a willingness to pay of 0 thalers, there is a 50% chance to get feedback.
- If you want to increase your chance of getting feedback, consider reporting positive willingness to pay for feedback.
- If you want to increase your chance of not getting feedback, consider reporting negative willingness to pay for feedback.
- The higher your willingness to pay is, the more likely you get feedback on your fluid intelligence.

Further explanations:

How does it work exactly?

We draw a random price of feedback between -100 ECU and 100 ECU. If your willingness to pay to get feedback is equal or greater than the price, you get feedback and pay the price. If your willingness to get feedback is smaller than the random price, you do not get feedback and keep your endowment. Please note that both a random price of feedback and your willingness to pay for it can be either positive or negative.

This mechanism ensures that answering questions honestly is in your best interest.

Note: Carefully and honestly answering the question is in your best interest.

How much are you willing to pay to see your results at the end of the experiment?

My willingness to pay to get my results at the end of the experiment is -13 thalers.

Figure A6: Willingness-to-pay for feedback screen (answered)
Feedback zu Ihrer fluiden Intelligenz am Ende des Experiments

Ihre Entscheidung auf dieser Seite beeinflusst Ihre Chancen, am Ende des Experiments (d.h. nachdem Sie alle 48 Bilderrätsel bearbeitet haben) Feedback zu Ihrer fluiden Intelligenz zu erhalten und zu sehen wie gut Sie tatsächlich abgeschnitten haben.

Wie viel sind Sie bereit zu zahlen, um Feedback zu erhalten?

- Bitte geben Sie dazu einen Betrag zwischen -100 Taler und 100 Taler an.
- Nachdem Sie ihre Entscheidung getroffen haben, ob Sie Feedback über Ihre fluid Intelligenz erhalten wollen oder nicht, können Sie diese nicht mehr ändern. Das bedeutet auch, dass Sie, wenn Sie Feedback bekommen, dieses nicht vermeiden können und wir Ihnen anzeigen werden, wie gut Sie tatsächlich abgeschnitten haben.
- Bei einer Zahlungs bereitschaft von 0 Taler besteht eine 50%ige Wahrscheinlichkeit, Feedback zu erhalten.
- Wenn Sie die Wahrscheinlichkeit Feedback zu erhalten erhöhen möchten, sollten Sie eine positive Zahlungs bereitschaft angeben.
- Wenn Sie die Wahrscheinlichkeit erhöhen möchten, kein Feedback zu erhalten, sollten Sie eine negative Zahlungs bereitschaft für das Feedback angeben.
- Je höher Ihre Zahlungs bereitschaft ist, desto wahrscheinlicher erhalten Sie Feedback zu Ihrer fluiden Intelligenz.

Weitere Erklärungen:

Wie funktioniert das genau?

Durch diesen Mechanismus wird sichergestellt, dass eine ehrliche Beantwortung der Fragen in Ihrem besten Interesse ist.

Beispiele

Beachten Sie: Eine sorgfältige und ehrliche Beantwortung der Fragen ist in Ihrem besten Interesse.

Wie viel sind Sie bereit zu zahlen, um am Ende des Experiments Ihre Ergebnisse zu sehen?

<table>
<thead>
<tr>
<th>Ich will mein Ergebnis auf keinen Fall sehen</th>
<th>Ich will mein Ergebnis auf jeden Fall sehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Bitte klicken Sie auf den Schieberegler, um Ihre Zahlungs bereitschaft anzugeben. Sie können Ihre Entscheidung im Anschluss noch verändern.

Figure A7: Willingness-to-pay for feedback screen
Feedback zu Ihrer fluiden Intelligenz am Ende des Experiments

Ihre Entscheidung auf dieser Seite beeinflusst Ihre Chancen, am Ende des Experiments (d.h. nachdem Sie alle 48 Bilderrätsel bearbeitet haben) Feedback zu Ihrer fluiden Intelligenz zu erhalten und zu sehen wie gut Sie tatsächlich abgeschnitten haben.

Wie viel sind Sie bereit zu zahlen, um Feedback zu erhalten?

- Bitte geben Sie dazu einen Betrag zwischen -100 Taler und 100 Taler an.
- Nachdem Sie Ihre Entscheidung getroffen haben, ob Sie Feedback über Ihre fluide Intelligenz erhalten wollen oder nicht, können Sie diese nicht mehr ändern. Das bedeutet auch, dass Sie, wenn Sie Feedback bekommen, dieses nicht vermeiden können und wir Ihnen anzeigen werden, wie gut Sie tatsächlich abgeschnitten haben.
- Bei einer Zahlungsbereitschaft von 0 Taler besteht eine 50%ige Wahrscheinlichkeit, Feedback zu erhalten.
- Wenn Sie die Wahrscheinlichkeit Feedback zu erhalten erhöhen möchten, sollten Sie eine positive Zahlungsbereitschaft angeben.
- Wenn Sie die Wahrscheinlichkeit erhöhen möchten, kein Feedback zu erhalten, sollten Sie eine negative Zahlungsbereitschaft für das Feedback angeben.
- Je höher Ihre Zahlungsbereitschaft ist, desto wahrscheinlicher erhalten Sie Feedback zu Ihrer fluiden Intelligenz.

Weitere Erklärungen:

Wie funktioniert das genau?

Durch diesen Mechanismus wird sichergestellt, dass eine ehrliche Beantwortung der Fragen in Ihrem besten Interesse ist.

Beispiele

Beachten Sie: Eine sorgfältige und ehrliche Beantwortung der Fragen ist in Ihrem besten Interesse.

Wie viel sind Sie bereit zu zahlen, um am Ende des Experiments Ihre Ergebnisse zu sehen?

Ich will mein Ergebnis auf keinen Fall sehen

-100

0

100

Ich will mein Ergebnis auf jeden Fall sehen

Meine Zahlungsbereitschaft, um am Ende des Experiment mein Ergebnis zu bekommen, ist -13 Taler.

Figure A8: Willingness-to-pay for feedback screen (answered)
C.7 Questionnaire: English

Please answer the following questions (Page 1 of 4)

Now please fill in the following questions before we proceed to the payment. Please provide the following data about yourself.

How old are you?

What is your gender?

What is your occupation?

☐ Study

☐ Other

What do you study?

How many experiments (approximately) have you already participated in?

What is your current average grade or that of your last degree?

What was the final grade of your last school degree (1.0 - 4.0)?

How much money do you have available each month (after deducting fixed costs such as rent, insurance, etc.)?

How much money do you spend each month (after deducting fixed costs such as rent, insurance, etc.)?

Weiter
Please answer the following questions (Page 2 of 4)

Are you in general a person who is willing to take risks or do you prefer to avoid risks?
Not willing to take risks ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9 ○ 10 Very willing to take risks

Compared to others, are you generally willing to give up something today in order to benefit from it in the future, or are you unwilling to do so compared to others?
Not at all willing to give up ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9 ○ 10 Very willing to give up

How important to you is the opinion others have about you?
Not important at all ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9 ○ 10 Extremely important
Please answer the following questions (Page 3 of 4)

How strongly do you agree with the following statements? Please answer on a scale of 0 to 5, where 0 means you do not agree with the statement at all and 5 means you agree very strongly.

This is about the characteristic “fairness”

1. I would feel good if I was a person who had this quality.
 - 0 1 2 3 4 5
2. Being someone who has this quality is an important part of who I am.
 - 0 1 2 3 4 5
3. A big part of my emotional well-being is tied to having this quality.
 - 0 1 2 3 4 5
4. I would be ashamed to be a person who has this characteristic.
 - 0 1 2 3 4 5
5. Having this characteristic is not really important to me.
 - 0 1 2 3 4 5
6. Having this quality is an important part of my self-image.
 - 0 1 2 3 4 5

This is about the characteristic “generosity”

1. I would feel good if I was a person who had this quality.
 - 0 1 2 3 4 5
2. Being someone who has this quality is an important part of who I am.
 - 0 1 2 3 4 5
3. A big part of my emotional well-being is tied to having this quality.
 - 0 1 2 3 4 5
4. I would be ashamed to be a person who has this characteristic.
 - 0 1 2 3 4 5
5. Having this characteristic is not really important to me.
 - 0 1 2 3 4 5
6. Having this quality is an important part of my self-image.
 - 0 1 2 3 4 5

This is about the characteristic “kindness”

1. I would feel good if I was a person who had this quality.
 - 0 1 2 3 4 5
2. Being someone who has this quality is an important part of who I am.
 ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

3. A big part of my emotional well-being is tied to having this quality.
 ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

4. I would be ashamed to be a person who has this characteristic.
 ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

5. Having this characteristic is not really important to me.
 ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

6. Having this quality is an important part of my self-image.
 ○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5
Lottery decisions (Page 4 of 4)

Please answer a few more questions about lotteries where you can earn or lose money once again if you decide to accept them.

Below are listed 6 different lotteries:
- For each of the 6 lotteries, you can choose to accept or reject the lottery.
- If you reject a lottery, your payment will remain unchanged. If you accept a lottery, you will realize an additional profit or an additional loss.
- At the end of the experiment, one of the 6 lotteries is randomly selected.
- So, you should make each lottery decision as if it was your only decision. The selected lottery is then drawn to determine whether the additional profit or loss will be realized.

<table>
<thead>
<tr>
<th>Lottery</th>
<th>Your decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>With a probability of 50% you lose 4 thalers.</td>
<td>Accept ○ ○ Reject</td>
</tr>
<tr>
<td>With a probability of 50% you win 12 thalers.</td>
<td></td>
</tr>
<tr>
<td>With a probability of 50% you lose 6 thalers.</td>
<td>Accept ○ ○ Accept</td>
</tr>
<tr>
<td>With a probability of 50% you win 12 thalers.</td>
<td></td>
</tr>
<tr>
<td>With a probability of 50% you lose 8 thalers.</td>
<td>Accept ○ ○ Reject</td>
</tr>
<tr>
<td>With a probability of 50% you win 12 thalers.</td>
<td></td>
</tr>
<tr>
<td>With a probability of 50% you lose 10 thalers.</td>
<td>Accept ○ ○ Reject</td>
</tr>
<tr>
<td>With a probability of 50% you win 12 thalers.</td>
<td></td>
</tr>
<tr>
<td>With a probability of 50% you lose 12 thalers.</td>
<td>Accept ○ ○ Reject</td>
</tr>
<tr>
<td>With a probability of 50% you win 12 thalers.</td>
<td></td>
</tr>
<tr>
<td>With a probability of 50% you lose 14 thalers.</td>
<td>Accept ○ ○ Reject</td>
</tr>
<tr>
<td>With a probability of 50% you win 12 thalers.</td>
<td></td>
</tr>
</tbody>
</table>
Please set as many of the 11 sliders as possible to the central position of the respective scale (between 49 and 51).

Figure A14: Overconfidence elicitation: Slider task

We are interested in your self-assessment

What do you think, how many slider tasks did you correctly set to the middle position?

0 1 2 3 4 5 6 7 8 9 10 11

For your assessment, you can earn additional 10 thalers.

Please note: Answering the question carefully and honestly is in your best interest. An honest answer increases the chance of you earning the bonus of 10 thalers. The exact details of the payment rules are available at the end of the experiment by request.

Figure A15: Overconfidence elicitation: Self-assessment

54
Results

You have worked on all the slider screens.

<table>
<thead>
<tr>
<th>Number of correct sliders</th>
<th>Your self-assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

In total you correctly positioned 1 sliders. For each correctly positioned slider you receive 2 thalers.

Additionally you receive a bonus of 10 thalers for your self-assessment.

Figure A16: Overconfidence elicitation: Feedback
Bitte beantworten Sie die folgenden Fragen (Seite 1 von 4)

Füllen Sie nun bitte die folgenden Fragen aus, bevor wir zur Auszahlung kommen. Bitte geben Sie die folgenden Daten zu Ihrer Person an.

Wie alt sind Sie?

Was ist Ihr Geschlecht?

Was ist Ihre Tätigkeit?
- [] Studium
- [] Anderes

Was studieren Sie?

An wie vielen Experimenten haben Sie (ungefähr) bereits teilgenommen?

Was ist Ihre akutelle Durchschnittsnote bzw. die Ihres letzten Abschlusses?

Was war die Abschlussnote Ihres letzten Schulabschlusses (1,0 - 4,0)?

Wie viel Geld haben Sie monatlich (nach Abzug von Fixkosten wie Miete, Versicherungen etc.) zur Verfügung?

Wie viel Geld geben Sie monatlich aus (nach Abzug von Fixkosten wie Miete, Versicherungen etc.)?

Weiter
Bitte beantworten Sie noch die folgenden Fragen (Seite 2 von 4)

Sind Sie im Allgemeinen ein risikobereiter Mensch oder versuchen Sie, Risiken zu vermeiden?
Gar nicht risikobereit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Sehr risikobereit

Sind Sie im Vergleich zu anderen im Allgemeinen bereit heute auf etwas zu verzichten, um in der Zukunft davon zu profitieren oder sind Sie im Vergleich zu anderen dazu nicht bereit?
Gar nicht bereit zu verzichten | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Sehr bereit zu verzichten

Wie wichtig ist Ihnen die Meinung, die andere über Sie haben?
Überhaupt nicht wichtig | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Extrem wichtig

Weiter
Bitte beantworten Sie noch die folgenden Fragen (Seite 3 von 4)

Wie sehr stimmen Sie den folgenden Aussagen zu? Bitte antworten Sie auf einer Skala von 0 bis 5. Dabei bedeutet 0, dass Sie der Aussage gar nicht zustimmen und 5, dass Sie sehr stark zustimmen.

Es geht um die Eigenschaft "Fairness"

1. Ich würde mich gut fühlen, wenn ich eine Person wäre, die diese Eigenschaft hat.
 0 0 1 2 3 4 5

2. Jemand zu sein, der diese Eigenschaft hat, ist ein wichtiger Teil von dem, was ich bin.
 0 0 1 2 3 4 5

 0 0 1 2 3 4 5

4. Ich würde mich schämen, eine Person zu sein, die diese Eigenschaft hat.
 0 0 1 2 3 4 5

5. Diese Eigenschaft zu haben, ist für mich nicht wirklich wichtig.
 0 0 1 2 3 4 5

 0 0 1 2 3 4 5

Es geht um die Eigenschaft "Großzügigkeit"

1. Ich würde mich gut fühlen, wenn ich eine Person wäre, die diese Eigenschaft hat.
 0 0 1 2 3 4 5

2. Jemand zu sein, der diese Eigenschaft hat, ist ein wichtiger Teil von dem, was ich bin.
 0 0 1 2 3 4 5

 0 0 1 2 3 4 5

4. Ich würde mich schämen, eine Person zu sein, die diese Eigenschaft hat.
 0 0 1 2 3 4 5

5. Diese Eigenschaft zu haben, ist für mich nicht wirklich wichtig.
 0 0 1 2 3 4 5

 0 0 1 2 3 4 5

Es geht um die Eigenschaft "Freundlichkeit"

1. Ich würde mich gut fühlen, wenn ich eine Person wäre, die diese Eigenschaft hat.
 0 0 1 2 3 4 5

Figure A19: Questionnaire: Page 3 of 4
2. Jemand zu sein, der diese Eigenschaft hat, ist ein wichtiger Teil von dem, was ich bin.
○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

4. Ich würde mich schämen, eine Person zu sein, die diese Eigenschaft hat.
○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

5. Diese Eigenschaft zu haben, ist für mich nicht wirklich wichtig.
○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

○ 0 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5

Figure A20: Questionnaire: Page 3 of 4
Lotterieentscheidungen (Seite 4 von 4)

Bitte beantworten Sie im Folgenden noch ein paar Fragen zu Lotterien, bei denen Sie noch einmal Geld verdienen oder auch verlieren können, falls Sie sich entscheiden, die Lotterien zu akzeptieren.

Unten sind 6 verschiedene Lotterien aufgelistet:
- Sie können für jede der 6 Lotterien wählen, ob Sie die Lotterie akzeptieren oder ablehnen möchten.
- Falls Sie eine Lotterie ablehnen, bleibt Ihre Auszahlung unverändert. Falls Sie eine Lotterie akzeptieren, werden Sie einen zusätzlichen Gewinn oder einen zusätzlichen Verlust realisieren.
- Am Ende des Experiments wird zufällig eine der 6 Lotterien ausgewählt.
- Sie sollten also jede Lotterieentscheidung so treffen, als wäre es Ihre einzige Entscheidung. Die ausgewählte Lotterie wird anschließend ausgelost, um festzustellen, ob sich der zusätzliche Gewinn oder Verlust realisiert.

<table>
<thead>
<tr>
<th>Lotterie</th>
<th>Ihre Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % verlieren Sie 4 Taler.</td>
<td>Akzeptieren</td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % gewinnen Sie 12 Taler.</td>
<td></td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % verlieren Sie 6 Taler.</td>
<td>Akzeptieren</td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % gewinnen Sie 12 Taler.</td>
<td></td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % verlieren Sie 8 Taler.</td>
<td>Akzeptieren</td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % gewinnen Sie 12 Taler.</td>
<td></td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % verlieren Sie 10 Taler.</td>
<td>Akzeptieren</td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % gewinnen Sie 12 Taler.</td>
<td></td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % verlieren Sie 12 Taler.</td>
<td>Akzeptieren</td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % gewinnen Sie 12 Taler.</td>
<td></td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % verlieren Sie 14 Taler.</td>
<td>Akzeptieren</td>
</tr>
<tr>
<td>Mit einer Wahrscheinlichkeit von 50 % gewinnen Sie 12 Taler.</td>
<td></td>
</tr>
</tbody>
</table>
Wir sind an Ihrer Selbsteinschätzung interessiert

Was denken Sie, wie viele Schieberaufgaben haben Sie korrekt auf die mittlere Position eingestellt?

Für Ihre Einschätzung können Sie zusätzlich 10 Taler verdienen.

Ergebnisse

Sie haben alle Schieberbildschirme bearbeitet.

<table>
<thead>
<tr>
<th>Anzahl korrekter Schieber</th>
<th>Ihre Selbsteinschätzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Sie haben insgesamt 1 Schieber korrekt positioniert. **Für jeden korrekten Schieber erhalten Sie 2 Taler.**

Zusätzlich erhalten Sie einen **Bonus von 10 Taler** für die Selbsteinschätzung.

Figure A24: Overconfidence elicitation: Feedback